/******/ (() => { // webpackBootstrap /******/ var __webpack_modules__ = ({ /***/ "../../Users/chop/Desktop/chamran/Three/texture/text.png": /*!***************************************************************!*\ !*** ../../Users/chop/Desktop/chamran/Three/texture/text.png ***! \***************************************************************/ /***/ ((__unused_webpack_module, __webpack_exports__, __webpack_require__) => { "use strict"; __webpack_require__.r(__webpack_exports__); /* harmony export */ __webpack_require__.d(__webpack_exports__, { /* harmony export */ "default": () => (__WEBPACK_DEFAULT_EXPORT__) /* harmony export */ }); /* harmony default export */ const __WEBPACK_DEFAULT_EXPORT__ = (__webpack_require__.p + "2fc205c5dd2bec64ca543627f54923a0.png"); /***/ }), /***/ "./node_modules/three-dragcontrols/lib/index.module.js": /*!*************************************************************!*\ !*** ./node_modules/three-dragcontrols/lib/index.module.js ***! \*************************************************************/ /***/ ((__unused_webpack_module, __webpack_exports__, __webpack_require__) => { "use strict"; __webpack_require__.r(__webpack_exports__); /* harmony export */ __webpack_require__.d(__webpack_exports__, { /* harmony export */ "default": () => (__WEBPACK_DEFAULT_EXPORT__) /* harmony export */ }); /* harmony import */ var three__WEBPACK_IMPORTED_MODULE_0__ = __webpack_require__(/*! three */ "./node_modules/three/build/three.module.js"); /* * @author zz85 / https://github.com/zz85 * @author mrdoob / http://mrdoob.com * Running this will allow you to drag three.js objects around the screen. */ function DragControls(_objects, _camera, _domElement) { if (_objects.isCamera) { console.warn('THREE.DragControls: Constructor now expects ( objects, camera, domElement )'); var temp = _objects; _objects = _camera; _camera = temp; } var _plane = new three__WEBPACK_IMPORTED_MODULE_0__.Plane(); var _raycaster = new three__WEBPACK_IMPORTED_MODULE_0__.Raycaster(); var _mouse = new three__WEBPACK_IMPORTED_MODULE_0__.Vector2(); var _offset = new three__WEBPACK_IMPORTED_MODULE_0__.Vector3(); var _intersection = new three__WEBPACK_IMPORTED_MODULE_0__.Vector3(); var _selected = null, _hovered = null; // var scope = this; function activate() { _domElement.addEventListener('mousemove', onDocumentMouseMove, false); _domElement.addEventListener('mousedown', onDocumentMouseDown, false); _domElement.addEventListener('mouseup', onDocumentMouseCancel, false); _domElement.addEventListener('mouseleave', onDocumentMouseCancel, false); _domElement.addEventListener('touchmove', onDocumentTouchMove, false); _domElement.addEventListener('touchstart', onDocumentTouchStart, false); _domElement.addEventListener('touchend', onDocumentTouchEnd, false); } function deactivate() { _domElement.removeEventListener('mousemove', onDocumentMouseMove, false); _domElement.removeEventListener('mousedown', onDocumentMouseDown, false); _domElement.removeEventListener('mouseup', onDocumentMouseCancel, false); _domElement.removeEventListener('mouseleave', onDocumentMouseCancel, false); _domElement.removeEventListener('touchmove', onDocumentTouchMove, false); _domElement.removeEventListener('touchstart', onDocumentTouchStart, false); _domElement.removeEventListener('touchend', onDocumentTouchEnd, false); } function dispose() { deactivate(); } function onDocumentMouseMove(event) { event.preventDefault(); var rect = _domElement.getBoundingClientRect(); _mouse.x = ((event.clientX - rect.left) / rect.width) * 2 - 1; _mouse.y = -((event.clientY - rect.top) / rect.height) * 2 + 1; _raycaster.setFromCamera(_mouse, _camera); if (_selected && scope.enabled) { if (_raycaster.ray.intersectPlane(_plane, _intersection)) { _selected.position.copy(_intersection.sub(_offset)); } scope.dispatchEvent({ type: 'drag', object: _selected }); return; } _raycaster.setFromCamera(_mouse, _camera); var intersects = _raycaster.intersectObjects(_objects); if (intersects.length > 0) { var object = intersects[0].object; _plane.setFromNormalAndCoplanarPoint(_camera.getWorldDirection(_plane.normal), object.position); if (_hovered !== object) { scope.dispatchEvent({ type: 'hoveron', object: object }); _domElement.style.cursor = 'pointer'; _hovered = object; } } else { if (_hovered !== null) { scope.dispatchEvent({ type: 'hoveroff', object: _hovered }); _domElement.style.cursor = 'auto'; _hovered = null; } } } function onDocumentMouseDown(event) { event.preventDefault(); _raycaster.setFromCamera(_mouse, _camera); var intersects = _raycaster.intersectObjects(_objects); if (intersects.length > 0) { _selected = intersects[0].object; if (_raycaster.ray.intersectPlane(_plane, _intersection)) { _offset.copy(_intersection).sub(_selected.position); } _domElement.style.cursor = 'move'; scope.dispatchEvent({ type: 'dragstart', object: _selected }); } } function onDocumentMouseCancel(event) { event.preventDefault(); if (_selected) { scope.dispatchEvent({ type: 'dragend', object: _selected }); _selected = null; } _domElement.style.cursor = 'auto'; } function onDocumentTouchMove(event) { event.preventDefault(); event = event.changedTouches[0]; var rect = _domElement.getBoundingClientRect(); _mouse.x = ((event.clientX - rect.left) / rect.width) * 2 - 1; _mouse.y = -((event.clientY - rect.top) / rect.height) * 2 + 1; _raycaster.setFromCamera(_mouse, _camera); if (_selected && scope.enabled) { if (_raycaster.ray.intersectPlane(_plane, _intersection)) { _selected.position.copy(_intersection.sub(_offset)); } scope.dispatchEvent({ type: 'drag', object: _selected }); return; } } function onDocumentTouchStart(event) { event.preventDefault(); event = event.changedTouches[0]; var rect = _domElement.getBoundingClientRect(); _mouse.x = ((event.clientX - rect.left) / rect.width) * 2 - 1; _mouse.y = -((event.clientY - rect.top) / rect.height) * 2 + 1; _raycaster.setFromCamera(_mouse, _camera); var intersects = _raycaster.intersectObjects(_objects); if (intersects.length > 0) { _selected = intersects[0].object; _plane.setFromNormalAndCoplanarPoint(_camera.getWorldDirection(_plane.normal), _selected.position); if (_raycaster.ray.intersectPlane(_plane, _intersection)) { _offset.copy(_intersection).sub(_selected.position); } _domElement.style.cursor = 'move'; scope.dispatchEvent({ type: 'dragstart', object: _selected }); } } function onDocumentTouchEnd(event) { event.preventDefault(); if (_selected) { scope.dispatchEvent({ type: 'dragend', object: _selected }); _selected = null; } _domElement.style.cursor = 'auto'; } activate(); // API this.enabled = true; this.activate = activate; this.deactivate = deactivate; this.dispose = dispose; // Backward compatibility this.setObjects = function() { console.error('THREE.DragControls: setObjects() has been removed.'); }; this.on = function(type, listener) { console.warn('THREE.DragControls: on() has been deprecated. Use addEventListener() instead.'); scope.addEventListener(type, listener); }; this.off = function(type, listener) { console.warn('THREE.DragControls: off() has been deprecated. Use removeEventListener() instead.'); scope.removeEventListener(type, listener); }; this.notify = function(type) { console.error('THREE.DragControls: notify() has been deprecated. Use dispatchEvent() instead.'); scope.dispatchEvent({ type: type }); }; } DragControls.prototype = Object.create(three__WEBPACK_IMPORTED_MODULE_0__.EventDispatcher.prototype); DragControls.prototype.constructor = DragControls; /* harmony default export */ const __WEBPACK_DEFAULT_EXPORT__ = (DragControls); /***/ }), /***/ "./node_modules/three-orbitcontrols/OrbitControls.js": /*!***********************************************************!*\ !*** ./node_modules/three-orbitcontrols/OrbitControls.js ***! \***********************************************************/ /***/ ((module, exports, __webpack_require__) => { /* three-orbitcontrols addendum */ var THREE = __webpack_require__(/*! three */ "./node_modules/three/build/three.module.js"); /** * @author qiao / https://github.com/qiao * @author mrdoob / http://mrdoob.com * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley * @author erich666 / http://erichaines.com * @author ScieCode / http://github.com/sciecode */ // This set of controls performs orbiting, dollying (zooming), and panning. // Unlike TrackballControls, it maintains the "up" direction object.up (+Y by default). // // Orbit - left mouse / touch: one-finger move // Zoom - middle mouse, or mousewheel / touch: two-finger spread or squish // Pan - right mouse, or left mouse + ctrl/meta/shiftKey, or arrow keys / touch: two-finger move THREE.OrbitControls = function ( object, domElement ) { if ( domElement === undefined ) console.warn( 'THREE.OrbitControls: The second parameter "domElement" is now mandatory.' ); if ( domElement === document ) console.error( 'THREE.OrbitControls: "document" should not be used as the target "domElement". Please use "renderer.domElement" instead.' ); this.object = object; this.domElement = domElement; // Set to false to disable this control this.enabled = true; // "target" sets the location of focus, where the object orbits around this.target = new THREE.Vector3(); // How far you can dolly in and out ( PerspectiveCamera only ) this.minDistance = 0; this.maxDistance = Infinity; // How far you can zoom in and out ( OrthographicCamera only ) this.minZoom = 0; this.maxZoom = Infinity; // How far you can orbit vertically, upper and lower limits. // Range is 0 to Math.PI radians. this.minPolarAngle = 0; // radians this.maxPolarAngle = Math.PI; // radians // How far you can orbit horizontally, upper and lower limits. // If set, must be a sub-interval of the interval [ - Math.PI, Math.PI ]. this.minAzimuthAngle = - Infinity; // radians this.maxAzimuthAngle = Infinity; // radians // Set to true to enable damping (inertia) // If damping is enabled, you must call controls.update() in your animation loop this.enableDamping = false; this.dampingFactor = 0.05; // This option actually enables dollying in and out; left as "zoom" for backwards compatibility. // Set to false to disable zooming this.enableZoom = true; this.zoomSpeed = 1.0; // Set to false to disable rotating this.enableRotate = true; this.rotateSpeed = 1.0; // Set to false to disable panning this.enablePan = true; this.panSpeed = 1.0; this.screenSpacePanning = false; // if true, pan in screen-space this.keyPanSpeed = 7.0; // pixels moved per arrow key push // Set to true to automatically rotate around the target // If auto-rotate is enabled, you must call controls.update() in your animation loop this.autoRotate = false; this.autoRotateSpeed = 2.0; // 30 seconds per round when fps is 60 // Set to false to disable use of the keys this.enableKeys = true; // The four arrow keys this.keys = { LEFT: 37, UP: 38, RIGHT: 39, BOTTOM: 40 }; // Mouse buttons this.mouseButtons = { LEFT: THREE.MOUSE.ROTATE, MIDDLE: THREE.MOUSE.DOLLY, RIGHT: THREE.MOUSE.PAN }; // Touch fingers this.touches = { ONE: THREE.TOUCH.ROTATE, TWO: THREE.TOUCH.DOLLY_PAN }; // for reset this.target0 = this.target.clone(); this.position0 = this.object.position.clone(); this.zoom0 = this.object.zoom; // // public methods // this.getPolarAngle = function () { return spherical.phi; }; this.getAzimuthalAngle = function () { return spherical.theta; }; this.saveState = function () { scope.target0.copy( scope.target ); scope.position0.copy( scope.object.position ); scope.zoom0 = scope.object.zoom; }; this.reset = function () { scope.target.copy( scope.target0 ); scope.object.position.copy( scope.position0 ); scope.object.zoom = scope.zoom0; scope.object.updateProjectionMatrix(); scope.dispatchEvent( changeEvent ); scope.update(); state = STATE.NONE; }; // this method is exposed, but perhaps it would be better if we can make it private... this.update = function () { var offset = new THREE.Vector3(); // so camera.up is the orbit axis var quat = new THREE.Quaternion().setFromUnitVectors( object.up, new THREE.Vector3( 0, 1, 0 ) ); var quatInverse = quat.clone().inverse(); var lastPosition = new THREE.Vector3(); var lastQuaternion = new THREE.Quaternion(); return function update() { var position = scope.object.position; offset.copy( position ).sub( scope.target ); // rotate offset to "y-axis-is-up" space offset.applyQuaternion( quat ); // angle from z-axis around y-axis spherical.setFromVector3( offset ); if ( scope.autoRotate && state === STATE.NONE ) { rotateLeft( getAutoRotationAngle() ); } if ( scope.enableDamping ) { spherical.theta += sphericalDelta.theta * scope.dampingFactor; spherical.phi += sphericalDelta.phi * scope.dampingFactor; } else { spherical.theta += sphericalDelta.theta; spherical.phi += sphericalDelta.phi; } // restrict theta to be between desired limits spherical.theta = Math.max( scope.minAzimuthAngle, Math.min( scope.maxAzimuthAngle, spherical.theta ) ); // restrict phi to be between desired limits spherical.phi = Math.max( scope.minPolarAngle, Math.min( scope.maxPolarAngle, spherical.phi ) ); spherical.makeSafe(); spherical.radius *= scale; // restrict radius to be between desired limits spherical.radius = Math.max( scope.minDistance, Math.min( scope.maxDistance, spherical.radius ) ); // move target to panned location if ( scope.enableDamping === true ) { scope.target.addScaledVector( panOffset, scope.dampingFactor ); } else { scope.target.add( panOffset ); } offset.setFromSpherical( spherical ); // rotate offset back to "camera-up-vector-is-up" space offset.applyQuaternion( quatInverse ); position.copy( scope.target ).add( offset ); scope.object.lookAt( scope.target ); if ( scope.enableDamping === true ) { sphericalDelta.theta *= ( 1 - scope.dampingFactor ); sphericalDelta.phi *= ( 1 - scope.dampingFactor ); panOffset.multiplyScalar( 1 - scope.dampingFactor ); } else { sphericalDelta.set( 0, 0, 0 ); panOffset.set( 0, 0, 0 ); } scale = 1; // update condition is: // min(camera displacement, camera rotation in radians)^2 > EPS // using small-angle approximation cos(x/2) = 1 - x^2 / 8 if ( zoomChanged || lastPosition.distanceToSquared( scope.object.position ) > EPS || 8 * ( 1 - lastQuaternion.dot( scope.object.quaternion ) ) > EPS ) { scope.dispatchEvent( changeEvent ); lastPosition.copy( scope.object.position ); lastQuaternion.copy( scope.object.quaternion ); zoomChanged = false; return true; } return false; }; }(); this.dispose = function () { scope.domElement.removeEventListener( 'contextmenu', onContextMenu, false ); scope.domElement.removeEventListener( 'mousedown', onMouseDown, false ); scope.domElement.removeEventListener( 'wheel', onMouseWheel, false ); scope.domElement.removeEventListener( 'touchstart', onTouchStart, false ); scope.domElement.removeEventListener( 'touchend', onTouchEnd, false ); scope.domElement.removeEventListener( 'touchmove', onTouchMove, false ); document.removeEventListener( 'mousemove', onMouseMove, false ); document.removeEventListener( 'mouseup', onMouseUp, false ); scope.domElement.removeEventListener( 'keydown', onKeyDown, false ); //scope.dispatchEvent( { type: 'dispose' } ); // should this be added here? }; // // internals // var scope = this; var changeEvent = { type: 'change' }; var startEvent = { type: 'start' }; var endEvent = { type: 'end' }; var STATE = { NONE: - 1, ROTATE: 0, DOLLY: 1, PAN: 2, TOUCH_ROTATE: 3, TOUCH_PAN: 4, TOUCH_DOLLY_PAN: 5, TOUCH_DOLLY_ROTATE: 6 }; var state = STATE.NONE; var EPS = 0.000001; // current position in spherical coordinates var spherical = new THREE.Spherical(); var sphericalDelta = new THREE.Spherical(); var scale = 1; var panOffset = new THREE.Vector3(); var zoomChanged = false; var rotateStart = new THREE.Vector2(); var rotateEnd = new THREE.Vector2(); var rotateDelta = new THREE.Vector2(); var panStart = new THREE.Vector2(); var panEnd = new THREE.Vector2(); var panDelta = new THREE.Vector2(); var dollyStart = new THREE.Vector2(); var dollyEnd = new THREE.Vector2(); var dollyDelta = new THREE.Vector2(); function getAutoRotationAngle() { return 2 * Math.PI / 60 / 60 * scope.autoRotateSpeed; } function getZoomScale() { return Math.pow( 0.95, scope.zoomSpeed ); } function rotateLeft( angle ) { sphericalDelta.theta -= angle; } function rotateUp( angle ) { sphericalDelta.phi -= angle; } var panLeft = function () { var v = new THREE.Vector3(); return function panLeft( distance, objectMatrix ) { v.setFromMatrixColumn( objectMatrix, 0 ); // get X column of objectMatrix v.multiplyScalar( - distance ); panOffset.add( v ); }; }(); var panUp = function () { var v = new THREE.Vector3(); return function panUp( distance, objectMatrix ) { if ( scope.screenSpacePanning === true ) { v.setFromMatrixColumn( objectMatrix, 1 ); } else { v.setFromMatrixColumn( objectMatrix, 0 ); v.crossVectors( scope.object.up, v ); } v.multiplyScalar( distance ); panOffset.add( v ); }; }(); // deltaX and deltaY are in pixels; right and down are positive var pan = function () { var offset = new THREE.Vector3(); return function pan( deltaX, deltaY ) { var element = scope.domElement; if ( scope.object.isPerspectiveCamera ) { // perspective var position = scope.object.position; offset.copy( position ).sub( scope.target ); var targetDistance = offset.length(); // half of the fov is center to top of screen targetDistance *= Math.tan( ( scope.object.fov / 2 ) * Math.PI / 180.0 ); // we use only clientHeight here so aspect ratio does not distort speed panLeft( 2 * deltaX * targetDistance / element.clientHeight, scope.object.matrix ); panUp( 2 * deltaY * targetDistance / element.clientHeight, scope.object.matrix ); } else if ( scope.object.isOrthographicCamera ) { // orthographic panLeft( deltaX * ( scope.object.right - scope.object.left ) / scope.object.zoom / element.clientWidth, scope.object.matrix ); panUp( deltaY * ( scope.object.top - scope.object.bottom ) / scope.object.zoom / element.clientHeight, scope.object.matrix ); } else { // camera neither orthographic nor perspective console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - pan disabled.' ); scope.enablePan = false; } }; }(); function dollyIn( dollyScale ) { if ( scope.object.isPerspectiveCamera ) { scale /= dollyScale; } else if ( scope.object.isOrthographicCamera ) { scope.object.zoom = Math.max( scope.minZoom, Math.min( scope.maxZoom, scope.object.zoom * dollyScale ) ); scope.object.updateProjectionMatrix(); zoomChanged = true; } else { console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled.' ); scope.enableZoom = false; } } function dollyOut( dollyScale ) { if ( scope.object.isPerspectiveCamera ) { scale *= dollyScale; } else if ( scope.object.isOrthographicCamera ) { scope.object.zoom = Math.max( scope.minZoom, Math.min( scope.maxZoom, scope.object.zoom / dollyScale ) ); scope.object.updateProjectionMatrix(); zoomChanged = true; } else { console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled.' ); scope.enableZoom = false; } } // // event callbacks - update the object state // function handleMouseDownRotate( event ) { rotateStart.set( event.clientX, event.clientY ); } function handleMouseDownDolly( event ) { dollyStart.set( event.clientX, event.clientY ); } function handleMouseDownPan( event ) { panStart.set( event.clientX, event.clientY ); } function handleMouseMoveRotate( event ) { rotateEnd.set( event.clientX, event.clientY ); rotateDelta.subVectors( rotateEnd, rotateStart ).multiplyScalar( scope.rotateSpeed ); var element = scope.domElement; rotateLeft( 2 * Math.PI * rotateDelta.x / element.clientHeight ); // yes, height rotateUp( 2 * Math.PI * rotateDelta.y / element.clientHeight ); rotateStart.copy( rotateEnd ); scope.update(); } function handleMouseMoveDolly( event ) { dollyEnd.set( event.clientX, event.clientY ); dollyDelta.subVectors( dollyEnd, dollyStart ); if ( dollyDelta.y > 0 ) { dollyIn( getZoomScale() ); } else if ( dollyDelta.y < 0 ) { dollyOut( getZoomScale() ); } dollyStart.copy( dollyEnd ); scope.update(); } function handleMouseMovePan( event ) { panEnd.set( event.clientX, event.clientY ); panDelta.subVectors( panEnd, panStart ).multiplyScalar( scope.panSpeed ); pan( panDelta.x, panDelta.y ); panStart.copy( panEnd ); scope.update(); } function handleMouseUp( /*event*/ ) { // no-op } function handleMouseWheel( event ) { if ( event.deltaY < 0 ) { dollyOut( getZoomScale() ); } else if ( event.deltaY > 0 ) { dollyIn( getZoomScale() ); } scope.update(); } function handleKeyDown( event ) { var needsUpdate = false; switch ( event.keyCode ) { case scope.keys.UP: pan( 0, scope.keyPanSpeed ); needsUpdate = true; break; case scope.keys.BOTTOM: pan( 0, - scope.keyPanSpeed ); needsUpdate = true; break; case scope.keys.LEFT: pan( scope.keyPanSpeed, 0 ); needsUpdate = true; break; case scope.keys.RIGHT: pan( - scope.keyPanSpeed, 0 ); needsUpdate = true; break; } if ( needsUpdate ) { // prevent the browser from scrolling on cursor keys event.preventDefault(); scope.update(); } } function handleTouchStartRotate( event ) { if ( event.touches.length == 1 ) { rotateStart.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY ); } else { var x = 0.5 * ( event.touches[ 0 ].pageX + event.touches[ 1 ].pageX ); var y = 0.5 * ( event.touches[ 0 ].pageY + event.touches[ 1 ].pageY ); rotateStart.set( x, y ); } } function handleTouchStartPan( event ) { if ( event.touches.length == 1 ) { panStart.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY ); } else { var x = 0.5 * ( event.touches[ 0 ].pageX + event.touches[ 1 ].pageX ); var y = 0.5 * ( event.touches[ 0 ].pageY + event.touches[ 1 ].pageY ); panStart.set( x, y ); } } function handleTouchStartDolly( event ) { var dx = event.touches[ 0 ].pageX - event.touches[ 1 ].pageX; var dy = event.touches[ 0 ].pageY - event.touches[ 1 ].pageY; var distance = Math.sqrt( dx * dx + dy * dy ); dollyStart.set( 0, distance ); } function handleTouchStartDollyPan( event ) { if ( scope.enableZoom ) handleTouchStartDolly( event ); if ( scope.enablePan ) handleTouchStartPan( event ); } function handleTouchStartDollyRotate( event ) { if ( scope.enableZoom ) handleTouchStartDolly( event ); if ( scope.enableRotate ) handleTouchStartRotate( event ); } function handleTouchMoveRotate( event ) { if ( event.touches.length == 1 ) { rotateEnd.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY ); } else { var x = 0.5 * ( event.touches[ 0 ].pageX + event.touches[ 1 ].pageX ); var y = 0.5 * ( event.touches[ 0 ].pageY + event.touches[ 1 ].pageY ); rotateEnd.set( x, y ); } rotateDelta.subVectors( rotateEnd, rotateStart ).multiplyScalar( scope.rotateSpeed ); var element = scope.domElement; rotateLeft( 2 * Math.PI * rotateDelta.x / element.clientHeight ); // yes, height rotateUp( 2 * Math.PI * rotateDelta.y / element.clientHeight ); rotateStart.copy( rotateEnd ); } function handleTouchMovePan( event ) { if ( event.touches.length == 1 ) { panEnd.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY ); } else { var x = 0.5 * ( event.touches[ 0 ].pageX + event.touches[ 1 ].pageX ); var y = 0.5 * ( event.touches[ 0 ].pageY + event.touches[ 1 ].pageY ); panEnd.set( x, y ); } panDelta.subVectors( panEnd, panStart ).multiplyScalar( scope.panSpeed ); pan( panDelta.x, panDelta.y ); panStart.copy( panEnd ); } function handleTouchMoveDolly( event ) { var dx = event.touches[ 0 ].pageX - event.touches[ 1 ].pageX; var dy = event.touches[ 0 ].pageY - event.touches[ 1 ].pageY; var distance = Math.sqrt( dx * dx + dy * dy ); dollyEnd.set( 0, distance ); dollyDelta.set( 0, Math.pow( dollyEnd.y / dollyStart.y, scope.zoomSpeed ) ); dollyIn( dollyDelta.y ); dollyStart.copy( dollyEnd ); } function handleTouchMoveDollyPan( event ) { if ( scope.enableZoom ) handleTouchMoveDolly( event ); if ( scope.enablePan ) handleTouchMovePan( event ); } function handleTouchMoveDollyRotate( event ) { if ( scope.enableZoom ) handleTouchMoveDolly( event ); if ( scope.enableRotate ) handleTouchMoveRotate( event ); } function handleTouchEnd( /*event*/ ) { // no-op } // // event handlers - FSM: listen for events and reset state // function onMouseDown( event ) { if ( scope.enabled === false ) return; // Prevent the browser from scrolling. event.preventDefault(); // Manually set the focus since calling preventDefault above // prevents the browser from setting it automatically. scope.domElement.focus ? scope.domElement.focus() : window.focus(); switch ( event.button ) { case 0: switch ( scope.mouseButtons.LEFT ) { case THREE.MOUSE.ROTATE: if ( event.ctrlKey || event.metaKey || event.shiftKey ) { if ( scope.enablePan === false ) return; handleMouseDownPan( event ); state = STATE.PAN; } else { if ( scope.enableRotate === false ) return; handleMouseDownRotate( event ); state = STATE.ROTATE; } break; case THREE.MOUSE.PAN: if ( event.ctrlKey || event.metaKey || event.shiftKey ) { if ( scope.enableRotate === false ) return; handleMouseDownRotate( event ); state = STATE.ROTATE; } else { if ( scope.enablePan === false ) return; handleMouseDownPan( event ); state = STATE.PAN; } break; default: state = STATE.NONE; } break; case 1: switch ( scope.mouseButtons.MIDDLE ) { case THREE.MOUSE.DOLLY: if ( scope.enableZoom === false ) return; handleMouseDownDolly( event ); state = STATE.DOLLY; break; default: state = STATE.NONE; } break; case 2: switch ( scope.mouseButtons.RIGHT ) { case THREE.MOUSE.ROTATE: if ( scope.enableRotate === false ) return; handleMouseDownRotate( event ); state = STATE.ROTATE; break; case THREE.MOUSE.PAN: if ( scope.enablePan === false ) return; handleMouseDownPan( event ); state = STATE.PAN; break; default: state = STATE.NONE; } break; } if ( state !== STATE.NONE ) { document.addEventListener( 'mousemove', onMouseMove, false ); document.addEventListener( 'mouseup', onMouseUp, false ); scope.dispatchEvent( startEvent ); } } function onMouseMove( event ) { if ( scope.enabled === false ) return; event.preventDefault(); switch ( state ) { case STATE.ROTATE: if ( scope.enableRotate === false ) return; handleMouseMoveRotate( event ); break; case STATE.DOLLY: if ( scope.enableZoom === false ) return; handleMouseMoveDolly( event ); break; case STATE.PAN: if ( scope.enablePan === false ) return; handleMouseMovePan( event ); break; } } function onMouseUp( event ) { if ( scope.enabled === false ) return; handleMouseUp( event ); document.removeEventListener( 'mousemove', onMouseMove, false ); document.removeEventListener( 'mouseup', onMouseUp, false ); scope.dispatchEvent( endEvent ); state = STATE.NONE; } function onMouseWheel( event ) { if ( scope.enabled === false || scope.enableZoom === false || ( state !== STATE.NONE && state !== STATE.ROTATE ) ) return; event.preventDefault(); event.stopPropagation(); scope.dispatchEvent( startEvent ); handleMouseWheel( event ); scope.dispatchEvent( endEvent ); } function onKeyDown( event ) { if ( scope.enabled === false || scope.enableKeys === false || scope.enablePan === false ) return; handleKeyDown( event ); } function onTouchStart( event ) { if ( scope.enabled === false ) return; event.preventDefault(); switch ( event.touches.length ) { case 1: switch ( scope.touches.ONE ) { case THREE.TOUCH.ROTATE: if ( scope.enableRotate === false ) return; handleTouchStartRotate( event ); state = STATE.TOUCH_ROTATE; break; case THREE.TOUCH.PAN: if ( scope.enablePan === false ) return; handleTouchStartPan( event ); state = STATE.TOUCH_PAN; break; default: state = STATE.NONE; } break; case 2: switch ( scope.touches.TWO ) { case THREE.TOUCH.DOLLY_PAN: if ( scope.enableZoom === false && scope.enablePan === false ) return; handleTouchStartDollyPan( event ); state = STATE.TOUCH_DOLLY_PAN; break; case THREE.TOUCH.DOLLY_ROTATE: if ( scope.enableZoom === false && scope.enableRotate === false ) return; handleTouchStartDollyRotate( event ); state = STATE.TOUCH_DOLLY_ROTATE; break; default: state = STATE.NONE; } break; default: state = STATE.NONE; } if ( state !== STATE.NONE ) { scope.dispatchEvent( startEvent ); } } function onTouchMove( event ) { if ( scope.enabled === false ) return; event.preventDefault(); event.stopPropagation(); switch ( state ) { case STATE.TOUCH_ROTATE: if ( scope.enableRotate === false ) return; handleTouchMoveRotate( event ); scope.update(); break; case STATE.TOUCH_PAN: if ( scope.enablePan === false ) return; handleTouchMovePan( event ); scope.update(); break; case STATE.TOUCH_DOLLY_PAN: if ( scope.enableZoom === false && scope.enablePan === false ) return; handleTouchMoveDollyPan( event ); scope.update(); break; case STATE.TOUCH_DOLLY_ROTATE: if ( scope.enableZoom === false && scope.enableRotate === false ) return; handleTouchMoveDollyRotate( event ); scope.update(); break; default: state = STATE.NONE; } } function onTouchEnd( event ) { if ( scope.enabled === false ) return; handleTouchEnd( event ); scope.dispatchEvent( endEvent ); state = STATE.NONE; } function onContextMenu( event ) { if ( scope.enabled === false ) return; event.preventDefault(); } // scope.domElement.addEventListener( 'contextmenu', onContextMenu, false ); scope.domElement.addEventListener( 'mousedown', onMouseDown, false ); scope.domElement.addEventListener( 'wheel', onMouseWheel, false ); scope.domElement.addEventListener( 'touchstart', onTouchStart, false ); scope.domElement.addEventListener( 'touchend', onTouchEnd, false ); scope.domElement.addEventListener( 'touchmove', onTouchMove, false ); scope.domElement.addEventListener( 'keydown', onKeyDown, false ); // make sure element can receive keys. if ( scope.domElement.tabIndex === - 1 ) { scope.domElement.tabIndex = 0; } // force an update at start this.update(); }; THREE.OrbitControls.prototype = Object.create( THREE.EventDispatcher.prototype ); THREE.OrbitControls.prototype.constructor = THREE.OrbitControls; // This set of controls performs orbiting, dollying (zooming), and panning. // Unlike TrackballControls, it maintains the "up" direction object.up (+Y by default). // This is very similar to OrbitControls, another set of touch behavior // // Orbit - right mouse, or left mouse + ctrl/meta/shiftKey / touch: two-finger rotate // Zoom - middle mouse, or mousewheel / touch: two-finger spread or squish // Pan - left mouse, or arrow keys / touch: one-finger move THREE.MapControls = function ( object, domElement ) { THREE.OrbitControls.call( this, object, domElement ); this.mouseButtons.LEFT = THREE.MOUSE.PAN; this.mouseButtons.RIGHT = THREE.MOUSE.ROTATE; this.touches.ONE = THREE.TOUCH.PAN; this.touches.TWO = THREE.TOUCH.DOLLY_ROTATE; }; THREE.MapControls.prototype = Object.create( THREE.EventDispatcher.prototype ); THREE.MapControls.prototype.constructor = THREE.MapControls; /* three-orbitcontrols addendum */ module.exports = exports["default"] = THREE.OrbitControls; /***/ }), /***/ "./node_modules/three/build/three.module.js": /*!**************************************************!*\ !*** ./node_modules/three/build/three.module.js ***! \**************************************************/ /***/ ((__unused_webpack_module, __webpack_exports__, __webpack_require__) => { "use strict"; __webpack_require__.r(__webpack_exports__); /* harmony export */ __webpack_require__.d(__webpack_exports__, { /* harmony export */ "ACESFilmicToneMapping": () => (/* binding */ ACESFilmicToneMapping), /* harmony export */ "AddEquation": () => (/* binding */ AddEquation), /* harmony export */ "AddOperation": () => (/* binding */ AddOperation), /* harmony export */ "AdditiveAnimationBlendMode": () => (/* binding */ AdditiveAnimationBlendMode), /* harmony export */ "AdditiveBlending": () => (/* binding */ AdditiveBlending), /* harmony export */ "AlphaFormat": () => (/* binding */ AlphaFormat), /* harmony export */ "AlwaysDepth": () => (/* binding */ AlwaysDepth), /* harmony export */ "AlwaysStencilFunc": () => (/* binding */ AlwaysStencilFunc), /* harmony export */ "AmbientLight": () => (/* binding */ AmbientLight), /* harmony export */ "AmbientLightProbe": () => (/* binding */ AmbientLightProbe), /* harmony export */ "AnimationClip": () => (/* binding */ AnimationClip), /* harmony export */ "AnimationLoader": () => (/* binding */ AnimationLoader), /* harmony export */ "AnimationMixer": () => (/* binding */ AnimationMixer), /* harmony export */ "AnimationObjectGroup": () => (/* binding */ AnimationObjectGroup), /* harmony export */ "AnimationUtils": () => (/* binding */ AnimationUtils), /* harmony export */ "ArcCurve": () => (/* binding */ ArcCurve), /* harmony export */ "ArrayCamera": () => (/* binding */ ArrayCamera), /* harmony export */ "ArrowHelper": () => (/* binding */ ArrowHelper), /* harmony export */ "Audio": () => (/* binding */ Audio), /* harmony export */ "AudioAnalyser": () => (/* binding */ AudioAnalyser), /* harmony export */ "AudioContext": () => (/* binding */ AudioContext), /* harmony export */ "AudioListener": () => (/* binding */ AudioListener), /* harmony export */ "AudioLoader": () => (/* binding */ AudioLoader), /* harmony export */ "AxesHelper": () => (/* binding */ AxesHelper), /* harmony export */ "AxisHelper": () => (/* binding */ AxisHelper), /* harmony export */ "BackSide": () => (/* binding */ BackSide), /* harmony export */ "BasicDepthPacking": () => (/* binding */ BasicDepthPacking), /* harmony export */ "BasicShadowMap": () => (/* binding */ BasicShadowMap), /* harmony export */ "BinaryTextureLoader": () => (/* binding */ BinaryTextureLoader), /* harmony export */ "Bone": () => (/* binding */ Bone), /* harmony export */ "BooleanKeyframeTrack": () => (/* binding */ BooleanKeyframeTrack), /* harmony export */ "BoundingBoxHelper": () => (/* binding */ BoundingBoxHelper), /* harmony export */ "Box2": () => (/* binding */ Box2), /* harmony export */ "Box3": () => (/* binding */ Box3), /* harmony export */ "Box3Helper": () => (/* binding */ Box3Helper), /* harmony export */ "BoxBufferGeometry": () => (/* binding */ BoxGeometry), /* harmony export */ "BoxGeometry": () => (/* binding */ BoxGeometry), /* harmony export */ "BoxHelper": () => (/* binding */ BoxHelper), /* harmony export */ "BufferAttribute": () => (/* binding */ BufferAttribute), /* harmony export */ "BufferGeometry": () => (/* binding */ BufferGeometry), /* harmony export */ "BufferGeometryLoader": () => (/* binding */ BufferGeometryLoader), /* harmony export */ "ByteType": () => (/* binding */ ByteType), /* harmony export */ "Cache": () => (/* binding */ Cache), /* harmony export */ "Camera": () => (/* binding */ Camera), /* harmony export */ "CameraHelper": () => (/* binding */ CameraHelper), /* harmony export */ "CanvasRenderer": () => (/* binding */ CanvasRenderer), /* harmony export */ "CanvasTexture": () => (/* binding */ CanvasTexture), /* harmony export */ "CatmullRomCurve3": () => (/* binding */ CatmullRomCurve3), /* harmony export */ "CineonToneMapping": () => (/* binding */ CineonToneMapping), /* harmony export */ "CircleBufferGeometry": () => (/* binding */ CircleGeometry), /* harmony export */ "CircleGeometry": () => (/* binding */ CircleGeometry), /* harmony export */ "ClampToEdgeWrapping": () => (/* binding */ ClampToEdgeWrapping), /* harmony export */ "Clock": () => (/* binding */ Clock), /* harmony export */ "Color": () => (/* binding */ Color), /* harmony export */ "ColorKeyframeTrack": () => (/* binding */ ColorKeyframeTrack), /* harmony export */ "CompressedTexture": () => (/* binding */ CompressedTexture), /* harmony export */ "CompressedTextureLoader": () => (/* binding */ CompressedTextureLoader), /* harmony export */ "ConeBufferGeometry": () => (/* binding */ ConeGeometry), /* harmony export */ "ConeGeometry": () => (/* binding */ ConeGeometry), /* harmony export */ "CubeCamera": () => (/* binding */ CubeCamera), /* harmony export */ "CubeReflectionMapping": () => (/* binding */ CubeReflectionMapping), /* harmony export */ "CubeRefractionMapping": () => (/* binding */ CubeRefractionMapping), /* harmony export */ "CubeTexture": () => (/* binding */ CubeTexture), /* harmony export */ "CubeTextureLoader": () => (/* binding */ CubeTextureLoader), /* harmony export */ "CubeUVReflectionMapping": () => (/* binding */ CubeUVReflectionMapping), /* harmony export */ "CubeUVRefractionMapping": () => (/* binding */ CubeUVRefractionMapping), /* harmony export */ "CubicBezierCurve": () => (/* binding */ CubicBezierCurve), /* harmony export */ "CubicBezierCurve3": () => (/* binding */ CubicBezierCurve3), /* harmony export */ "CubicInterpolant": () => (/* binding */ CubicInterpolant), /* harmony export */ "CullFaceBack": () => (/* binding */ CullFaceBack), /* harmony export */ "CullFaceFront": () => (/* binding */ CullFaceFront), /* harmony export */ "CullFaceFrontBack": () => (/* binding */ CullFaceFrontBack), /* harmony export */ "CullFaceNone": () => (/* binding */ CullFaceNone), /* harmony export */ "Curve": () => (/* binding */ Curve), /* harmony export */ "CurvePath": () => (/* binding */ CurvePath), /* harmony export */ "CustomBlending": () => (/* binding */ CustomBlending), /* harmony export */ "CustomToneMapping": () => (/* binding */ CustomToneMapping), /* harmony export */ "CylinderBufferGeometry": () => (/* binding */ CylinderGeometry), /* harmony export */ "CylinderGeometry": () => (/* binding */ CylinderGeometry), /* harmony export */ "Cylindrical": () => (/* binding */ Cylindrical), /* harmony export */ "DataTexture": () => (/* binding */ DataTexture), /* harmony export */ "DataTexture2DArray": () => (/* binding */ DataTexture2DArray), /* harmony export */ "DataTexture3D": () => (/* binding */ DataTexture3D), /* harmony export */ "DataTextureLoader": () => (/* binding */ DataTextureLoader), /* harmony export */ "DataUtils": () => (/* binding */ DataUtils), /* harmony export */ "DecrementStencilOp": () => (/* binding */ DecrementStencilOp), /* harmony export */ "DecrementWrapStencilOp": () => (/* binding */ DecrementWrapStencilOp), /* harmony export */ "DefaultLoadingManager": () => (/* binding */ DefaultLoadingManager), /* harmony export */ "DepthFormat": () => (/* binding */ DepthFormat), /* harmony export */ "DepthStencilFormat": () => (/* binding */ DepthStencilFormat), /* harmony export */ "DepthTexture": () => (/* binding */ DepthTexture), /* harmony export */ "DirectionalLight": () => (/* binding */ DirectionalLight), /* harmony export */ "DirectionalLightHelper": () => (/* binding */ DirectionalLightHelper), /* harmony export */ "DiscreteInterpolant": () => (/* binding */ DiscreteInterpolant), /* harmony export */ "DodecahedronBufferGeometry": () => (/* binding */ DodecahedronGeometry), /* harmony export */ "DodecahedronGeometry": () => (/* binding */ DodecahedronGeometry), /* harmony export */ "DoubleSide": () => (/* binding */ DoubleSide), /* harmony export */ "DstAlphaFactor": () => (/* binding */ DstAlphaFactor), /* harmony export */ "DstColorFactor": () => (/* binding */ DstColorFactor), /* harmony export */ "DynamicBufferAttribute": () => (/* binding */ DynamicBufferAttribute), /* harmony export */ "DynamicCopyUsage": () => (/* binding */ DynamicCopyUsage), /* harmony export */ "DynamicDrawUsage": () => (/* binding */ DynamicDrawUsage), /* harmony export */ "DynamicReadUsage": () => (/* binding */ DynamicReadUsage), /* harmony export */ "EdgesGeometry": () => (/* binding */ EdgesGeometry), /* harmony export */ "EdgesHelper": () => (/* binding */ EdgesHelper), /* harmony export */ "EllipseCurve": () => (/* binding */ EllipseCurve), /* harmony export */ "EqualDepth": () => (/* binding */ EqualDepth), /* harmony export */ "EqualStencilFunc": () => (/* binding */ EqualStencilFunc), /* harmony export */ "EquirectangularReflectionMapping": () => (/* binding */ EquirectangularReflectionMapping), /* harmony export */ "EquirectangularRefractionMapping": () => (/* binding */ EquirectangularRefractionMapping), /* harmony export */ "Euler": () => (/* binding */ Euler), /* harmony export */ "EventDispatcher": () => (/* binding */ EventDispatcher), /* harmony export */ "ExtrudeBufferGeometry": () => (/* binding */ ExtrudeGeometry), /* harmony export */ "ExtrudeGeometry": () => (/* binding */ ExtrudeGeometry), /* harmony export */ "FaceColors": () => (/* binding */ FaceColors), /* harmony export */ "FileLoader": () => (/* binding */ FileLoader), /* harmony export */ "FlatShading": () => (/* binding */ FlatShading), /* harmony export */ "Float16BufferAttribute": () => (/* binding */ Float16BufferAttribute), /* harmony export */ "Float32Attribute": () => (/* binding */ Float32Attribute), /* harmony export */ "Float32BufferAttribute": () => (/* binding */ Float32BufferAttribute), /* harmony export */ "Float64Attribute": () => (/* binding */ Float64Attribute), /* harmony export */ "Float64BufferAttribute": () => (/* binding */ Float64BufferAttribute), /* harmony export */ "FloatType": () => (/* binding */ FloatType), /* harmony export */ "Fog": () => (/* binding */ Fog), /* harmony export */ "FogExp2": () => (/* binding */ FogExp2), /* harmony export */ "Font": () => (/* binding */ Font), /* harmony export */ "FontLoader": () => (/* binding */ FontLoader), /* harmony export */ "FrontSide": () => (/* binding */ FrontSide), /* harmony export */ "Frustum": () => (/* binding */ Frustum), /* harmony export */ "GLBufferAttribute": () => (/* binding */ GLBufferAttribute), /* harmony export */ "GLSL1": () => (/* binding */ GLSL1), /* harmony export */ "GLSL3": () => (/* binding */ GLSL3), /* harmony export */ "GammaEncoding": () => (/* binding */ GammaEncoding), /* harmony export */ "GreaterDepth": () => (/* binding */ GreaterDepth), /* harmony export */ "GreaterEqualDepth": () => (/* binding */ GreaterEqualDepth), /* harmony export */ "GreaterEqualStencilFunc": () => (/* binding */ GreaterEqualStencilFunc), /* harmony export */ "GreaterStencilFunc": () => (/* binding */ GreaterStencilFunc), /* harmony export */ "GridHelper": () => (/* binding */ GridHelper), /* harmony export */ "Group": () => (/* binding */ Group), /* harmony export */ "HalfFloatType": () => (/* binding */ HalfFloatType), /* harmony export */ "HemisphereLight": () => (/* binding */ HemisphereLight), /* harmony export */ "HemisphereLightHelper": () => (/* binding */ HemisphereLightHelper), /* harmony export */ "HemisphereLightProbe": () => (/* binding */ HemisphereLightProbe), /* harmony export */ "IcosahedronBufferGeometry": () => (/* binding */ IcosahedronGeometry), /* harmony export */ "IcosahedronGeometry": () => (/* binding */ IcosahedronGeometry), /* harmony export */ "ImageBitmapLoader": () => (/* binding */ ImageBitmapLoader), /* harmony export */ "ImageLoader": () => (/* binding */ ImageLoader), /* harmony export */ "ImageUtils": () => (/* binding */ ImageUtils), /* harmony export */ "ImmediateRenderObject": () => (/* binding */ ImmediateRenderObject), /* harmony export */ "IncrementStencilOp": () => (/* binding */ IncrementStencilOp), /* harmony export */ "IncrementWrapStencilOp": () => (/* binding */ IncrementWrapStencilOp), /* harmony export */ "InstancedBufferAttribute": () => (/* binding */ InstancedBufferAttribute), /* harmony export */ "InstancedBufferGeometry": () => (/* binding */ InstancedBufferGeometry), /* harmony export */ "InstancedInterleavedBuffer": () => (/* binding */ InstancedInterleavedBuffer), /* harmony export */ "InstancedMesh": () => (/* binding */ InstancedMesh), /* harmony export */ "Int16Attribute": () => (/* binding */ Int16Attribute), /* harmony export */ "Int16BufferAttribute": () => (/* binding */ Int16BufferAttribute), /* harmony export */ "Int32Attribute": () => (/* binding */ Int32Attribute), /* harmony export */ "Int32BufferAttribute": () => (/* binding */ Int32BufferAttribute), /* harmony export */ "Int8Attribute": () => (/* binding */ Int8Attribute), /* harmony export */ "Int8BufferAttribute": () => (/* binding */ Int8BufferAttribute), /* harmony export */ "IntType": () => (/* binding */ IntType), /* harmony export */ "InterleavedBuffer": () => (/* binding */ InterleavedBuffer), /* harmony export */ "InterleavedBufferAttribute": () => (/* binding */ InterleavedBufferAttribute), /* harmony export */ "Interpolant": () => (/* binding */ Interpolant), /* harmony export */ "InterpolateDiscrete": () => (/* binding */ InterpolateDiscrete), /* harmony export */ "InterpolateLinear": () => (/* binding */ InterpolateLinear), /* harmony export */ "InterpolateSmooth": () => (/* binding */ InterpolateSmooth), /* harmony export */ "InvertStencilOp": () => (/* binding */ InvertStencilOp), /* harmony export */ "JSONLoader": () => (/* binding */ JSONLoader), /* harmony export */ "KeepStencilOp": () => (/* binding */ KeepStencilOp), /* harmony export */ "KeyframeTrack": () => (/* binding */ KeyframeTrack), /* harmony export */ "LOD": () => (/* binding */ LOD), /* harmony export */ "LatheBufferGeometry": () => (/* binding */ LatheGeometry), /* harmony export */ "LatheGeometry": () => (/* binding */ LatheGeometry), /* harmony export */ "Layers": () => (/* binding */ Layers), /* harmony export */ "LensFlare": () => (/* binding */ LensFlare), /* harmony export */ "LessDepth": () => (/* binding */ LessDepth), /* harmony export */ "LessEqualDepth": () => (/* binding */ LessEqualDepth), /* harmony export */ "LessEqualStencilFunc": () => (/* binding */ LessEqualStencilFunc), /* harmony export */ "LessStencilFunc": () => (/* binding */ LessStencilFunc), /* harmony export */ "Light": () => (/* binding */ Light), /* harmony export */ "LightProbe": () => (/* binding */ LightProbe), /* harmony export */ "Line": () => (/* binding */ Line), /* harmony export */ "Line3": () => (/* binding */ Line3), /* harmony export */ "LineBasicMaterial": () => (/* binding */ LineBasicMaterial), /* harmony export */ "LineCurve": () => (/* binding */ LineCurve), /* harmony export */ "LineCurve3": () => (/* binding */ LineCurve3), /* harmony export */ "LineDashedMaterial": () => (/* binding */ LineDashedMaterial), /* harmony export */ "LineLoop": () => (/* binding */ LineLoop), /* harmony export */ "LinePieces": () => (/* binding */ LinePieces), /* harmony export */ "LineSegments": () => (/* binding */ LineSegments), /* harmony export */ "LineStrip": () => (/* binding */ LineStrip), /* harmony export */ "LinearEncoding": () => (/* binding */ LinearEncoding), /* harmony export */ "LinearFilter": () => (/* binding */ LinearFilter), /* harmony export */ "LinearInterpolant": () => (/* binding */ LinearInterpolant), /* harmony export */ "LinearMipMapLinearFilter": () => (/* binding */ LinearMipMapLinearFilter), /* harmony export */ "LinearMipMapNearestFilter": () => (/* binding */ LinearMipMapNearestFilter), /* harmony export */ "LinearMipmapLinearFilter": () => (/* binding */ LinearMipmapLinearFilter), /* harmony export */ "LinearMipmapNearestFilter": () => (/* binding */ LinearMipmapNearestFilter), /* harmony export */ "LinearToneMapping": () => (/* binding */ LinearToneMapping), /* harmony export */ "Loader": () => (/* binding */ Loader), /* harmony export */ "LoaderUtils": () => (/* binding */ LoaderUtils), /* harmony export */ "LoadingManager": () => (/* binding */ LoadingManager), /* harmony export */ "LogLuvEncoding": () => (/* binding */ LogLuvEncoding), /* harmony export */ "LoopOnce": () => (/* binding */ LoopOnce), /* harmony export */ "LoopPingPong": () => (/* binding */ LoopPingPong), /* harmony export */ "LoopRepeat": () => (/* binding */ LoopRepeat), /* harmony export */ "LuminanceAlphaFormat": () => (/* binding */ LuminanceAlphaFormat), /* harmony export */ "LuminanceFormat": () => (/* binding */ LuminanceFormat), /* harmony export */ "MOUSE": () => (/* binding */ MOUSE), /* harmony export */ "Material": () => (/* binding */ Material), /* harmony export */ "MaterialLoader": () => (/* binding */ MaterialLoader), /* harmony export */ "Math": () => (/* binding */ MathUtils), /* harmony export */ "MathUtils": () => (/* binding */ MathUtils), /* harmony export */ "Matrix3": () => (/* binding */ Matrix3), /* harmony export */ "Matrix4": () => (/* binding */ Matrix4), /* harmony export */ "MaxEquation": () => (/* binding */ MaxEquation), /* harmony export */ "Mesh": () => (/* binding */ Mesh), /* harmony export */ "MeshBasicMaterial": () => (/* binding */ MeshBasicMaterial), /* harmony export */ "MeshDepthMaterial": () => (/* binding */ MeshDepthMaterial), /* harmony export */ "MeshDistanceMaterial": () => (/* binding */ MeshDistanceMaterial), /* harmony export */ "MeshFaceMaterial": () => (/* binding */ MeshFaceMaterial), /* harmony export */ "MeshLambertMaterial": () => (/* binding */ MeshLambertMaterial), /* harmony export */ "MeshMatcapMaterial": () => (/* binding */ MeshMatcapMaterial), /* harmony export */ "MeshNormalMaterial": () => (/* binding */ MeshNormalMaterial), /* harmony export */ "MeshPhongMaterial": () => (/* binding */ MeshPhongMaterial), /* harmony export */ "MeshPhysicalMaterial": () => (/* binding */ MeshPhysicalMaterial), /* harmony export */ "MeshStandardMaterial": () => (/* binding */ MeshStandardMaterial), /* harmony export */ "MeshToonMaterial": () => (/* binding */ MeshToonMaterial), /* harmony export */ "MinEquation": () => (/* binding */ MinEquation), /* harmony export */ "MirroredRepeatWrapping": () => (/* binding */ MirroredRepeatWrapping), /* harmony export */ "MixOperation": () => (/* binding */ MixOperation), /* harmony export */ "MultiMaterial": () => (/* binding */ MultiMaterial), /* harmony export */ "MultiplyBlending": () => (/* binding */ MultiplyBlending), /* harmony export */ "MultiplyOperation": () => (/* binding */ MultiplyOperation), /* harmony export */ "NearestFilter": () => (/* binding */ NearestFilter), /* harmony export */ "NearestMipMapLinearFilter": () => (/* binding */ NearestMipMapLinearFilter), /* harmony export */ "NearestMipMapNearestFilter": () => (/* binding */ NearestMipMapNearestFilter), /* harmony export */ "NearestMipmapLinearFilter": () => (/* binding */ NearestMipmapLinearFilter), /* harmony export */ "NearestMipmapNearestFilter": () => (/* binding */ NearestMipmapNearestFilter), /* harmony export */ "NeverDepth": () => (/* binding */ NeverDepth), /* harmony export */ "NeverStencilFunc": () => (/* binding */ NeverStencilFunc), /* harmony export */ "NoBlending": () => (/* binding */ NoBlending), /* harmony export */ "NoColors": () => (/* binding */ NoColors), /* harmony export */ "NoToneMapping": () => (/* binding */ NoToneMapping), /* harmony export */ "NormalAnimationBlendMode": () => (/* binding */ NormalAnimationBlendMode), /* harmony export */ "NormalBlending": () => (/* binding */ NormalBlending), /* harmony export */ "NotEqualDepth": () => (/* binding */ NotEqualDepth), /* harmony export */ "NotEqualStencilFunc": () => (/* binding */ NotEqualStencilFunc), /* harmony export */ "NumberKeyframeTrack": () => (/* binding */ NumberKeyframeTrack), /* harmony export */ "Object3D": () => (/* binding */ Object3D), /* harmony export */ "ObjectLoader": () => (/* binding */ ObjectLoader), /* harmony export */ "ObjectSpaceNormalMap": () => (/* binding */ ObjectSpaceNormalMap), /* harmony export */ "OctahedronBufferGeometry": () => (/* binding */ OctahedronGeometry), /* harmony export */ "OctahedronGeometry": () => (/* binding */ OctahedronGeometry), /* harmony export */ "OneFactor": () => (/* binding */ OneFactor), /* harmony export */ "OneMinusDstAlphaFactor": () => (/* binding */ OneMinusDstAlphaFactor), /* harmony export */ "OneMinusDstColorFactor": () => (/* binding */ OneMinusDstColorFactor), /* harmony export */ "OneMinusSrcAlphaFactor": () => (/* binding */ OneMinusSrcAlphaFactor), /* harmony export */ "OneMinusSrcColorFactor": () => (/* binding */ OneMinusSrcColorFactor), /* harmony export */ "OrthographicCamera": () => (/* binding */ OrthographicCamera), /* harmony export */ "PCFShadowMap": () => (/* binding */ PCFShadowMap), /* harmony export */ "PCFSoftShadowMap": () => (/* binding */ PCFSoftShadowMap), /* harmony export */ "PMREMGenerator": () => (/* binding */ PMREMGenerator), /* harmony export */ "ParametricBufferGeometry": () => (/* binding */ ParametricGeometry), /* harmony export */ "ParametricGeometry": () => (/* binding */ ParametricGeometry), /* harmony export */ "Particle": () => (/* binding */ Particle), /* harmony export */ "ParticleBasicMaterial": () => (/* binding */ ParticleBasicMaterial), /* harmony export */ "ParticleSystem": () => (/* binding */ ParticleSystem), /* harmony export */ "ParticleSystemMaterial": () => (/* binding */ ParticleSystemMaterial), /* harmony export */ "Path": () => (/* binding */ Path), /* harmony export */ "PerspectiveCamera": () => (/* binding */ PerspectiveCamera), /* harmony export */ "Plane": () => (/* binding */ Plane), /* harmony export */ "PlaneBufferGeometry": () => (/* binding */ PlaneGeometry), /* harmony export */ "PlaneGeometry": () => (/* binding */ PlaneGeometry), /* harmony export */ "PlaneHelper": () => (/* binding */ PlaneHelper), /* harmony export */ "PointCloud": () => (/* binding */ PointCloud), /* harmony export */ "PointCloudMaterial": () => (/* binding */ PointCloudMaterial), /* harmony export */ "PointLight": () => (/* binding */ PointLight), /* harmony export */ "PointLightHelper": () => (/* binding */ PointLightHelper), /* harmony export */ "Points": () => (/* binding */ Points), /* harmony export */ "PointsMaterial": () => (/* binding */ PointsMaterial), /* harmony export */ "PolarGridHelper": () => (/* binding */ PolarGridHelper), /* harmony export */ "PolyhedronBufferGeometry": () => (/* binding */ PolyhedronGeometry), /* harmony export */ "PolyhedronGeometry": () => (/* binding */ PolyhedronGeometry), /* harmony export */ "PositionalAudio": () => (/* binding */ PositionalAudio), /* harmony export */ "PropertyBinding": () => (/* binding */ PropertyBinding), /* harmony export */ "PropertyMixer": () => (/* binding */ PropertyMixer), /* harmony export */ "QuadraticBezierCurve": () => (/* binding */ QuadraticBezierCurve), /* harmony export */ "QuadraticBezierCurve3": () => (/* binding */ QuadraticBezierCurve3), /* harmony export */ "Quaternion": () => (/* binding */ Quaternion), /* harmony export */ "QuaternionKeyframeTrack": () => (/* binding */ QuaternionKeyframeTrack), /* harmony export */ "QuaternionLinearInterpolant": () => (/* binding */ QuaternionLinearInterpolant), /* harmony export */ "REVISION": () => (/* binding */ REVISION), /* harmony export */ "RGBADepthPacking": () => (/* binding */ RGBADepthPacking), /* harmony export */ "RGBAFormat": () => (/* binding */ RGBAFormat), /* harmony export */ "RGBAIntegerFormat": () => (/* binding */ RGBAIntegerFormat), /* harmony export */ "RGBA_ASTC_10x10_Format": () => (/* binding */ RGBA_ASTC_10x10_Format), /* harmony export */ "RGBA_ASTC_10x5_Format": () => (/* binding */ RGBA_ASTC_10x5_Format), /* harmony export */ "RGBA_ASTC_10x6_Format": () => (/* binding */ RGBA_ASTC_10x6_Format), /* harmony export */ "RGBA_ASTC_10x8_Format": () => (/* binding */ RGBA_ASTC_10x8_Format), /* harmony export */ "RGBA_ASTC_12x10_Format": () => (/* binding */ RGBA_ASTC_12x10_Format), /* harmony export */ "RGBA_ASTC_12x12_Format": () => (/* binding */ RGBA_ASTC_12x12_Format), /* harmony export */ "RGBA_ASTC_4x4_Format": () => (/* binding */ RGBA_ASTC_4x4_Format), /* harmony export */ "RGBA_ASTC_5x4_Format": () => (/* binding */ RGBA_ASTC_5x4_Format), /* harmony export */ "RGBA_ASTC_5x5_Format": () => (/* binding */ RGBA_ASTC_5x5_Format), /* harmony export */ "RGBA_ASTC_6x5_Format": () => (/* binding */ RGBA_ASTC_6x5_Format), /* harmony export */ "RGBA_ASTC_6x6_Format": () => (/* binding */ RGBA_ASTC_6x6_Format), /* harmony export */ "RGBA_ASTC_8x5_Format": () => (/* binding */ RGBA_ASTC_8x5_Format), /* harmony export */ "RGBA_ASTC_8x6_Format": () => (/* binding */ RGBA_ASTC_8x6_Format), /* harmony export */ "RGBA_ASTC_8x8_Format": () => (/* binding */ RGBA_ASTC_8x8_Format), /* harmony export */ "RGBA_BPTC_Format": () => (/* binding */ RGBA_BPTC_Format), /* harmony export */ "RGBA_ETC2_EAC_Format": () => (/* binding */ RGBA_ETC2_EAC_Format), /* harmony export */ "RGBA_PVRTC_2BPPV1_Format": () => (/* binding */ RGBA_PVRTC_2BPPV1_Format), /* harmony export */ "RGBA_PVRTC_4BPPV1_Format": () => (/* binding */ RGBA_PVRTC_4BPPV1_Format), /* harmony export */ "RGBA_S3TC_DXT1_Format": () => (/* binding */ RGBA_S3TC_DXT1_Format), /* harmony export */ "RGBA_S3TC_DXT3_Format": () => (/* binding */ RGBA_S3TC_DXT3_Format), /* harmony export */ "RGBA_S3TC_DXT5_Format": () => (/* binding */ RGBA_S3TC_DXT5_Format), /* harmony export */ "RGBDEncoding": () => (/* binding */ RGBDEncoding), /* harmony export */ "RGBEEncoding": () => (/* binding */ RGBEEncoding), /* harmony export */ "RGBEFormat": () => (/* binding */ RGBEFormat), /* harmony export */ "RGBFormat": () => (/* binding */ RGBFormat), /* harmony export */ "RGBIntegerFormat": () => (/* binding */ RGBIntegerFormat), /* harmony export */ "RGBM16Encoding": () => (/* binding */ RGBM16Encoding), /* harmony export */ "RGBM7Encoding": () => (/* binding */ RGBM7Encoding), /* harmony export */ "RGB_ETC1_Format": () => (/* binding */ RGB_ETC1_Format), /* harmony export */ "RGB_ETC2_Format": () => (/* binding */ RGB_ETC2_Format), /* harmony export */ "RGB_PVRTC_2BPPV1_Format": () => (/* binding */ RGB_PVRTC_2BPPV1_Format), /* harmony export */ "RGB_PVRTC_4BPPV1_Format": () => (/* binding */ RGB_PVRTC_4BPPV1_Format), /* harmony export */ "RGB_S3TC_DXT1_Format": () => (/* binding */ RGB_S3TC_DXT1_Format), /* harmony export */ "RGFormat": () => (/* binding */ RGFormat), /* harmony export */ "RGIntegerFormat": () => (/* binding */ RGIntegerFormat), /* harmony export */ "RawShaderMaterial": () => (/* binding */ RawShaderMaterial), /* harmony export */ "Ray": () => (/* binding */ Ray), /* harmony export */ "Raycaster": () => (/* binding */ Raycaster), /* harmony export */ "RectAreaLight": () => (/* binding */ RectAreaLight), /* harmony export */ "RedFormat": () => (/* binding */ RedFormat), /* harmony export */ "RedIntegerFormat": () => (/* binding */ RedIntegerFormat), /* harmony export */ "ReinhardToneMapping": () => (/* binding */ ReinhardToneMapping), /* harmony export */ "RepeatWrapping": () => (/* binding */ RepeatWrapping), /* harmony export */ "ReplaceStencilOp": () => (/* binding */ ReplaceStencilOp), /* harmony export */ "ReverseSubtractEquation": () => (/* binding */ ReverseSubtractEquation), /* harmony export */ "RingBufferGeometry": () => (/* binding */ RingGeometry), /* harmony export */ "RingGeometry": () => (/* binding */ RingGeometry), /* harmony export */ "SRGB8_ALPHA8_ASTC_10x10_Format": () => (/* binding */ SRGB8_ALPHA8_ASTC_10x10_Format), /* harmony export */ "SRGB8_ALPHA8_ASTC_10x5_Format": () => (/* binding */ SRGB8_ALPHA8_ASTC_10x5_Format), /* harmony export */ "SRGB8_ALPHA8_ASTC_10x6_Format": () => (/* binding */ SRGB8_ALPHA8_ASTC_10x6_Format), /* harmony export */ "SRGB8_ALPHA8_ASTC_10x8_Format": () => (/* binding */ SRGB8_ALPHA8_ASTC_10x8_Format), /* harmony export */ "SRGB8_ALPHA8_ASTC_12x10_Format": () => (/* binding */ SRGB8_ALPHA8_ASTC_12x10_Format), /* harmony export */ "SRGB8_ALPHA8_ASTC_12x12_Format": () => (/* binding */ SRGB8_ALPHA8_ASTC_12x12_Format), /* harmony export */ "SRGB8_ALPHA8_ASTC_4x4_Format": () => (/* binding */ SRGB8_ALPHA8_ASTC_4x4_Format), /* harmony export */ "SRGB8_ALPHA8_ASTC_5x4_Format": () => (/* binding */ SRGB8_ALPHA8_ASTC_5x4_Format), /* harmony export */ "SRGB8_ALPHA8_ASTC_5x5_Format": () => (/* binding */ SRGB8_ALPHA8_ASTC_5x5_Format), /* harmony export */ "SRGB8_ALPHA8_ASTC_6x5_Format": () => (/* binding */ SRGB8_ALPHA8_ASTC_6x5_Format), /* harmony export */ "SRGB8_ALPHA8_ASTC_6x6_Format": () => (/* binding */ SRGB8_ALPHA8_ASTC_6x6_Format), /* harmony export */ "SRGB8_ALPHA8_ASTC_8x5_Format": () => (/* binding */ SRGB8_ALPHA8_ASTC_8x5_Format), /* harmony export */ "SRGB8_ALPHA8_ASTC_8x6_Format": () => (/* binding */ SRGB8_ALPHA8_ASTC_8x6_Format), /* harmony export */ "SRGB8_ALPHA8_ASTC_8x8_Format": () => (/* binding */ SRGB8_ALPHA8_ASTC_8x8_Format), /* harmony export */ "Scene": () => (/* binding */ Scene), /* harmony export */ "SceneUtils": () => (/* binding */ SceneUtils), /* harmony export */ "ShaderChunk": () => (/* binding */ ShaderChunk), /* harmony export */ "ShaderLib": () => (/* binding */ ShaderLib), /* harmony export */ "ShaderMaterial": () => (/* binding */ ShaderMaterial), /* harmony export */ "ShadowMaterial": () => (/* binding */ ShadowMaterial), /* harmony export */ "Shape": () => (/* binding */ Shape), /* harmony export */ "ShapeBufferGeometry": () => (/* binding */ ShapeGeometry), /* harmony export */ "ShapeGeometry": () => (/* binding */ ShapeGeometry), /* harmony export */ "ShapePath": () => (/* binding */ ShapePath), /* harmony export */ "ShapeUtils": () => (/* binding */ ShapeUtils), /* harmony export */ "ShortType": () => (/* binding */ ShortType), /* harmony export */ "Skeleton": () => (/* binding */ Skeleton), /* harmony export */ "SkeletonHelper": () => (/* binding */ SkeletonHelper), /* harmony export */ "SkinnedMesh": () => (/* binding */ SkinnedMesh), /* harmony export */ "SmoothShading": () => (/* binding */ SmoothShading), /* harmony export */ "Sphere": () => (/* binding */ Sphere), /* harmony export */ "SphereBufferGeometry": () => (/* binding */ SphereGeometry), /* harmony export */ "SphereGeometry": () => (/* binding */ SphereGeometry), /* harmony export */ "Spherical": () => (/* binding */ Spherical), /* harmony export */ "SphericalHarmonics3": () => (/* binding */ SphericalHarmonics3), /* harmony export */ "SplineCurve": () => (/* binding */ SplineCurve), /* harmony export */ "SpotLight": () => (/* binding */ SpotLight), /* harmony export */ "SpotLightHelper": () => (/* binding */ SpotLightHelper), /* harmony export */ "Sprite": () => (/* binding */ Sprite), /* harmony export */ "SpriteMaterial": () => (/* binding */ SpriteMaterial), /* harmony export */ "SrcAlphaFactor": () => (/* binding */ SrcAlphaFactor), /* harmony export */ "SrcAlphaSaturateFactor": () => (/* binding */ SrcAlphaSaturateFactor), /* harmony export */ "SrcColorFactor": () => (/* binding */ SrcColorFactor), /* harmony export */ "StaticCopyUsage": () => (/* binding */ StaticCopyUsage), /* harmony export */ "StaticDrawUsage": () => (/* binding */ StaticDrawUsage), /* harmony export */ "StaticReadUsage": () => (/* binding */ StaticReadUsage), /* harmony export */ "StereoCamera": () => (/* binding */ StereoCamera), /* harmony export */ "StreamCopyUsage": () => (/* binding */ StreamCopyUsage), /* harmony export */ "StreamDrawUsage": () => (/* binding */ StreamDrawUsage), /* harmony export */ "StreamReadUsage": () => (/* binding */ StreamReadUsage), /* harmony export */ "StringKeyframeTrack": () => (/* binding */ StringKeyframeTrack), /* harmony export */ "SubtractEquation": () => (/* binding */ SubtractEquation), /* harmony export */ "SubtractiveBlending": () => (/* binding */ SubtractiveBlending), /* harmony export */ "TOUCH": () => (/* binding */ TOUCH), /* harmony export */ "TangentSpaceNormalMap": () => (/* binding */ TangentSpaceNormalMap), /* harmony export */ "TetrahedronBufferGeometry": () => (/* binding */ TetrahedronGeometry), /* harmony export */ "TetrahedronGeometry": () => (/* binding */ TetrahedronGeometry), /* harmony export */ "TextBufferGeometry": () => (/* binding */ TextGeometry), /* harmony export */ "TextGeometry": () => (/* binding */ TextGeometry), /* harmony export */ "Texture": () => (/* binding */ Texture), /* harmony export */ "TextureLoader": () => (/* binding */ TextureLoader), /* harmony export */ "TorusBufferGeometry": () => (/* binding */ TorusGeometry), /* harmony export */ "TorusGeometry": () => (/* binding */ TorusGeometry), /* harmony export */ "TorusKnotBufferGeometry": () => (/* binding */ TorusKnotGeometry), /* harmony export */ "TorusKnotGeometry": () => (/* binding */ TorusKnotGeometry), /* harmony export */ "Triangle": () => (/* binding */ Triangle), /* harmony export */ "TriangleFanDrawMode": () => (/* binding */ TriangleFanDrawMode), /* harmony export */ "TriangleStripDrawMode": () => (/* binding */ TriangleStripDrawMode), /* harmony export */ "TrianglesDrawMode": () => (/* binding */ TrianglesDrawMode), /* harmony export */ "TubeBufferGeometry": () => (/* binding */ TubeGeometry), /* harmony export */ "TubeGeometry": () => (/* binding */ TubeGeometry), /* harmony export */ "UVMapping": () => (/* binding */ UVMapping), /* harmony export */ "Uint16Attribute": () => (/* binding */ Uint16Attribute), /* harmony export */ "Uint16BufferAttribute": () => (/* binding */ Uint16BufferAttribute), /* harmony export */ "Uint32Attribute": () => (/* binding */ Uint32Attribute), /* harmony export */ "Uint32BufferAttribute": () => (/* binding */ Uint32BufferAttribute), /* harmony export */ "Uint8Attribute": () => (/* binding */ Uint8Attribute), /* harmony export */ "Uint8BufferAttribute": () => (/* binding */ Uint8BufferAttribute), /* harmony export */ "Uint8ClampedAttribute": () => (/* binding */ Uint8ClampedAttribute), /* harmony export */ "Uint8ClampedBufferAttribute": () => (/* binding */ Uint8ClampedBufferAttribute), /* harmony export */ "Uniform": () => (/* binding */ Uniform), /* harmony export */ "UniformsLib": () => (/* binding */ UniformsLib), /* harmony export */ "UniformsUtils": () => (/* binding */ UniformsUtils), /* harmony export */ "UnsignedByteType": () => (/* binding */ UnsignedByteType), /* harmony export */ "UnsignedInt248Type": () => (/* binding */ UnsignedInt248Type), /* harmony export */ "UnsignedIntType": () => (/* binding */ UnsignedIntType), /* harmony export */ "UnsignedShort4444Type": () => (/* binding */ UnsignedShort4444Type), /* harmony export */ "UnsignedShort5551Type": () => (/* binding */ UnsignedShort5551Type), /* harmony export */ "UnsignedShort565Type": () => (/* binding */ UnsignedShort565Type), /* harmony export */ "UnsignedShortType": () => (/* binding */ UnsignedShortType), /* harmony export */ "VSMShadowMap": () => (/* binding */ VSMShadowMap), /* harmony export */ "Vector2": () => (/* binding */ Vector2), /* harmony export */ "Vector3": () => (/* binding */ Vector3), /* harmony export */ "Vector4": () => (/* binding */ Vector4), /* harmony export */ "VectorKeyframeTrack": () => (/* binding */ VectorKeyframeTrack), /* harmony export */ "Vertex": () => (/* binding */ Vertex), /* harmony export */ "VertexColors": () => (/* binding */ VertexColors), /* harmony export */ "VideoTexture": () => (/* binding */ VideoTexture), /* harmony export */ "WebGL1Renderer": () => (/* binding */ WebGL1Renderer), /* harmony export */ "WebGLCubeRenderTarget": () => (/* binding */ WebGLCubeRenderTarget), /* harmony export */ "WebGLMultipleRenderTargets": () => (/* binding */ WebGLMultipleRenderTargets), /* harmony export */ "WebGLMultisampleRenderTarget": () => (/* binding */ WebGLMultisampleRenderTarget), /* harmony export */ "WebGLRenderTarget": () => (/* binding */ WebGLRenderTarget), /* harmony export */ "WebGLRenderTargetCube": () => (/* binding */ WebGLRenderTargetCube), /* harmony export */ "WebGLRenderer": () => (/* binding */ WebGLRenderer), /* harmony export */ "WebGLUtils": () => (/* binding */ WebGLUtils), /* harmony export */ "WireframeGeometry": () => (/* binding */ WireframeGeometry), /* harmony export */ "WireframeHelper": () => (/* binding */ WireframeHelper), /* harmony export */ "WrapAroundEnding": () => (/* binding */ WrapAroundEnding), /* harmony export */ "XHRLoader": () => (/* binding */ XHRLoader), /* harmony export */ "ZeroCurvatureEnding": () => (/* binding */ ZeroCurvatureEnding), /* harmony export */ "ZeroFactor": () => (/* binding */ ZeroFactor), /* harmony export */ "ZeroSlopeEnding": () => (/* binding */ ZeroSlopeEnding), /* harmony export */ "ZeroStencilOp": () => (/* binding */ ZeroStencilOp), /* harmony export */ "sRGBEncoding": () => (/* binding */ sRGBEncoding) /* harmony export */ }); /** * @license * Copyright 2010-2021 Three.js Authors * SPDX-License-Identifier: MIT */ const REVISION = '132'; const MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2, ROTATE: 0, DOLLY: 1, PAN: 2 }; const TOUCH = { ROTATE: 0, PAN: 1, DOLLY_PAN: 2, DOLLY_ROTATE: 3 }; const CullFaceNone = 0; const CullFaceBack = 1; const CullFaceFront = 2; const CullFaceFrontBack = 3; const BasicShadowMap = 0; const PCFShadowMap = 1; const PCFSoftShadowMap = 2; const VSMShadowMap = 3; const FrontSide = 0; const BackSide = 1; const DoubleSide = 2; const FlatShading = 1; const SmoothShading = 2; const NoBlending = 0; const NormalBlending = 1; const AdditiveBlending = 2; const SubtractiveBlending = 3; const MultiplyBlending = 4; const CustomBlending = 5; const AddEquation = 100; const SubtractEquation = 101; const ReverseSubtractEquation = 102; const MinEquation = 103; const MaxEquation = 104; const ZeroFactor = 200; const OneFactor = 201; const SrcColorFactor = 202; const OneMinusSrcColorFactor = 203; const SrcAlphaFactor = 204; const OneMinusSrcAlphaFactor = 205; const DstAlphaFactor = 206; const OneMinusDstAlphaFactor = 207; const DstColorFactor = 208; const OneMinusDstColorFactor = 209; const SrcAlphaSaturateFactor = 210; const NeverDepth = 0; const AlwaysDepth = 1; const LessDepth = 2; const LessEqualDepth = 3; const EqualDepth = 4; const GreaterEqualDepth = 5; const GreaterDepth = 6; const NotEqualDepth = 7; const MultiplyOperation = 0; const MixOperation = 1; const AddOperation = 2; const NoToneMapping = 0; const LinearToneMapping = 1; const ReinhardToneMapping = 2; const CineonToneMapping = 3; const ACESFilmicToneMapping = 4; const CustomToneMapping = 5; const UVMapping = 300; const CubeReflectionMapping = 301; const CubeRefractionMapping = 302; const EquirectangularReflectionMapping = 303; const EquirectangularRefractionMapping = 304; const CubeUVReflectionMapping = 306; const CubeUVRefractionMapping = 307; const RepeatWrapping = 1000; const ClampToEdgeWrapping = 1001; const MirroredRepeatWrapping = 1002; const NearestFilter = 1003; const NearestMipmapNearestFilter = 1004; const NearestMipMapNearestFilter = 1004; const NearestMipmapLinearFilter = 1005; const NearestMipMapLinearFilter = 1005; const LinearFilter = 1006; const LinearMipmapNearestFilter = 1007; const LinearMipMapNearestFilter = 1007; const LinearMipmapLinearFilter = 1008; const LinearMipMapLinearFilter = 1008; const UnsignedByteType = 1009; const ByteType = 1010; const ShortType = 1011; const UnsignedShortType = 1012; const IntType = 1013; const UnsignedIntType = 1014; const FloatType = 1015; const HalfFloatType = 1016; const UnsignedShort4444Type = 1017; const UnsignedShort5551Type = 1018; const UnsignedShort565Type = 1019; const UnsignedInt248Type = 1020; const AlphaFormat = 1021; const RGBFormat = 1022; const RGBAFormat = 1023; const LuminanceFormat = 1024; const LuminanceAlphaFormat = 1025; const RGBEFormat = RGBAFormat; const DepthFormat = 1026; const DepthStencilFormat = 1027; const RedFormat = 1028; const RedIntegerFormat = 1029; const RGFormat = 1030; const RGIntegerFormat = 1031; const RGBIntegerFormat = 1032; const RGBAIntegerFormat = 1033; const RGB_S3TC_DXT1_Format = 33776; const RGBA_S3TC_DXT1_Format = 33777; const RGBA_S3TC_DXT3_Format = 33778; const RGBA_S3TC_DXT5_Format = 33779; const RGB_PVRTC_4BPPV1_Format = 35840; const RGB_PVRTC_2BPPV1_Format = 35841; const RGBA_PVRTC_4BPPV1_Format = 35842; const RGBA_PVRTC_2BPPV1_Format = 35843; const RGB_ETC1_Format = 36196; const RGB_ETC2_Format = 37492; const RGBA_ETC2_EAC_Format = 37496; const RGBA_ASTC_4x4_Format = 37808; const RGBA_ASTC_5x4_Format = 37809; const RGBA_ASTC_5x5_Format = 37810; const RGBA_ASTC_6x5_Format = 37811; const RGBA_ASTC_6x6_Format = 37812; const RGBA_ASTC_8x5_Format = 37813; const RGBA_ASTC_8x6_Format = 37814; const RGBA_ASTC_8x8_Format = 37815; const RGBA_ASTC_10x5_Format = 37816; const RGBA_ASTC_10x6_Format = 37817; const RGBA_ASTC_10x8_Format = 37818; const RGBA_ASTC_10x10_Format = 37819; const RGBA_ASTC_12x10_Format = 37820; const RGBA_ASTC_12x12_Format = 37821; const RGBA_BPTC_Format = 36492; const SRGB8_ALPHA8_ASTC_4x4_Format = 37840; const SRGB8_ALPHA8_ASTC_5x4_Format = 37841; const SRGB8_ALPHA8_ASTC_5x5_Format = 37842; const SRGB8_ALPHA8_ASTC_6x5_Format = 37843; const SRGB8_ALPHA8_ASTC_6x6_Format = 37844; const SRGB8_ALPHA8_ASTC_8x5_Format = 37845; const SRGB8_ALPHA8_ASTC_8x6_Format = 37846; const SRGB8_ALPHA8_ASTC_8x8_Format = 37847; const SRGB8_ALPHA8_ASTC_10x5_Format = 37848; const SRGB8_ALPHA8_ASTC_10x6_Format = 37849; const SRGB8_ALPHA8_ASTC_10x8_Format = 37850; const SRGB8_ALPHA8_ASTC_10x10_Format = 37851; const SRGB8_ALPHA8_ASTC_12x10_Format = 37852; const SRGB8_ALPHA8_ASTC_12x12_Format = 37853; const LoopOnce = 2200; const LoopRepeat = 2201; const LoopPingPong = 2202; const InterpolateDiscrete = 2300; const InterpolateLinear = 2301; const InterpolateSmooth = 2302; const ZeroCurvatureEnding = 2400; const ZeroSlopeEnding = 2401; const WrapAroundEnding = 2402; const NormalAnimationBlendMode = 2500; const AdditiveAnimationBlendMode = 2501; const TrianglesDrawMode = 0; const TriangleStripDrawMode = 1; const TriangleFanDrawMode = 2; const LinearEncoding = 3000; const sRGBEncoding = 3001; const GammaEncoding = 3007; const RGBEEncoding = 3002; const LogLuvEncoding = 3003; const RGBM7Encoding = 3004; const RGBM16Encoding = 3005; const RGBDEncoding = 3006; const BasicDepthPacking = 3200; const RGBADepthPacking = 3201; const TangentSpaceNormalMap = 0; const ObjectSpaceNormalMap = 1; const ZeroStencilOp = 0; const KeepStencilOp = 7680; const ReplaceStencilOp = 7681; const IncrementStencilOp = 7682; const DecrementStencilOp = 7683; const IncrementWrapStencilOp = 34055; const DecrementWrapStencilOp = 34056; const InvertStencilOp = 5386; const NeverStencilFunc = 512; const LessStencilFunc = 513; const EqualStencilFunc = 514; const LessEqualStencilFunc = 515; const GreaterStencilFunc = 516; const NotEqualStencilFunc = 517; const GreaterEqualStencilFunc = 518; const AlwaysStencilFunc = 519; const StaticDrawUsage = 35044; const DynamicDrawUsage = 35048; const StreamDrawUsage = 35040; const StaticReadUsage = 35045; const DynamicReadUsage = 35049; const StreamReadUsage = 35041; const StaticCopyUsage = 35046; const DynamicCopyUsage = 35050; const StreamCopyUsage = 35042; const GLSL1 = '100'; const GLSL3 = '300 es'; /** * https://github.com/mrdoob/eventdispatcher.js/ */ class EventDispatcher { addEventListener( type, listener ) { if ( this._listeners === undefined ) this._listeners = {}; const listeners = this._listeners; if ( listeners[ type ] === undefined ) { listeners[ type ] = []; } if ( listeners[ type ].indexOf( listener ) === - 1 ) { listeners[ type ].push( listener ); } } hasEventListener( type, listener ) { if ( this._listeners === undefined ) return false; const listeners = this._listeners; return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1; } removeEventListener( type, listener ) { if ( this._listeners === undefined ) return; const listeners = this._listeners; const listenerArray = listeners[ type ]; if ( listenerArray !== undefined ) { const index = listenerArray.indexOf( listener ); if ( index !== - 1 ) { listenerArray.splice( index, 1 ); } } } dispatchEvent( event ) { if ( this._listeners === undefined ) return; const listeners = this._listeners; const listenerArray = listeners[ event.type ]; if ( listenerArray !== undefined ) { event.target = this; // Make a copy, in case listeners are removed while iterating. const array = listenerArray.slice( 0 ); for ( let i = 0, l = array.length; i < l; i ++ ) { array[ i ].call( this, event ); } event.target = null; } } } const _lut = []; for ( let i = 0; i < 256; i ++ ) { _lut[ i ] = ( i < 16 ? '0' : '' ) + ( i ).toString( 16 ); } let _seed = 1234567; const DEG2RAD = Math.PI / 180; const RAD2DEG = 180 / Math.PI; // http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136 function generateUUID() { const d0 = Math.random() * 0xffffffff | 0; const d1 = Math.random() * 0xffffffff | 0; const d2 = Math.random() * 0xffffffff | 0; const d3 = Math.random() * 0xffffffff | 0; const uuid = _lut[ d0 & 0xff ] + _lut[ d0 >> 8 & 0xff ] + _lut[ d0 >> 16 & 0xff ] + _lut[ d0 >> 24 & 0xff ] + '-' + _lut[ d1 & 0xff ] + _lut[ d1 >> 8 & 0xff ] + '-' + _lut[ d1 >> 16 & 0x0f | 0x40 ] + _lut[ d1 >> 24 & 0xff ] + '-' + _lut[ d2 & 0x3f | 0x80 ] + _lut[ d2 >> 8 & 0xff ] + '-' + _lut[ d2 >> 16 & 0xff ] + _lut[ d2 >> 24 & 0xff ] + _lut[ d3 & 0xff ] + _lut[ d3 >> 8 & 0xff ] + _lut[ d3 >> 16 & 0xff ] + _lut[ d3 >> 24 & 0xff ]; // .toUpperCase() here flattens concatenated strings to save heap memory space. return uuid.toUpperCase(); } function clamp( value, min, max ) { return Math.max( min, Math.min( max, value ) ); } // compute euclidian modulo of m % n // https://en.wikipedia.org/wiki/Modulo_operation function euclideanModulo( n, m ) { return ( ( n % m ) + m ) % m; } // Linear mapping from range to range function mapLinear( x, a1, a2, b1, b2 ) { return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 ); } // https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/inverse-lerp-a-super-useful-yet-often-overlooked-function-r5230/ function inverseLerp( x, y, value ) { if ( x !== y ) { return ( value - x ) / ( y - x ); } else { return 0; } } // https://en.wikipedia.org/wiki/Linear_interpolation function lerp( x, y, t ) { return ( 1 - t ) * x + t * y; } // http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/ function damp( x, y, lambda, dt ) { return lerp( x, y, 1 - Math.exp( - lambda * dt ) ); } // https://www.desmos.com/calculator/vcsjnyz7x4 function pingpong( x, length = 1 ) { return length - Math.abs( euclideanModulo( x, length * 2 ) - length ); } // http://en.wikipedia.org/wiki/Smoothstep function smoothstep( x, min, max ) { if ( x <= min ) return 0; if ( x >= max ) return 1; x = ( x - min ) / ( max - min ); return x * x * ( 3 - 2 * x ); } function smootherstep( x, min, max ) { if ( x <= min ) return 0; if ( x >= max ) return 1; x = ( x - min ) / ( max - min ); return x * x * x * ( x * ( x * 6 - 15 ) + 10 ); } // Random integer from interval function randInt( low, high ) { return low + Math.floor( Math.random() * ( high - low + 1 ) ); } // Random float from interval function randFloat( low, high ) { return low + Math.random() * ( high - low ); } // Random float from <-range/2, range/2> interval function randFloatSpread( range ) { return range * ( 0.5 - Math.random() ); } // Deterministic pseudo-random float in the interval [ 0, 1 ] function seededRandom( s ) { if ( s !== undefined ) _seed = s % 2147483647; // Park-Miller algorithm _seed = _seed * 16807 % 2147483647; return ( _seed - 1 ) / 2147483646; } function degToRad( degrees ) { return degrees * DEG2RAD; } function radToDeg( radians ) { return radians * RAD2DEG; } function isPowerOfTwo( value ) { return ( value & ( value - 1 ) ) === 0 && value !== 0; } function ceilPowerOfTwo( value ) { return Math.pow( 2, Math.ceil( Math.log( value ) / Math.LN2 ) ); } function floorPowerOfTwo( value ) { return Math.pow( 2, Math.floor( Math.log( value ) / Math.LN2 ) ); } function setQuaternionFromProperEuler( q, a, b, c, order ) { // Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles // rotations are applied to the axes in the order specified by 'order' // rotation by angle 'a' is applied first, then by angle 'b', then by angle 'c' // angles are in radians const cos = Math.cos; const sin = Math.sin; const c2 = cos( b / 2 ); const s2 = sin( b / 2 ); const c13 = cos( ( a + c ) / 2 ); const s13 = sin( ( a + c ) / 2 ); const c1_3 = cos( ( a - c ) / 2 ); const s1_3 = sin( ( a - c ) / 2 ); const c3_1 = cos( ( c - a ) / 2 ); const s3_1 = sin( ( c - a ) / 2 ); switch ( order ) { case 'XYX': q.set( c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13 ); break; case 'YZY': q.set( s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13 ); break; case 'ZXZ': q.set( s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13 ); break; case 'XZX': q.set( c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13 ); break; case 'YXY': q.set( s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13 ); break; case 'ZYZ': q.set( s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13 ); break; default: console.warn( 'THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order ); } } var MathUtils = /*#__PURE__*/Object.freeze({ __proto__: null, DEG2RAD: DEG2RAD, RAD2DEG: RAD2DEG, generateUUID: generateUUID, clamp: clamp, euclideanModulo: euclideanModulo, mapLinear: mapLinear, inverseLerp: inverseLerp, lerp: lerp, damp: damp, pingpong: pingpong, smoothstep: smoothstep, smootherstep: smootherstep, randInt: randInt, randFloat: randFloat, randFloatSpread: randFloatSpread, seededRandom: seededRandom, degToRad: degToRad, radToDeg: radToDeg, isPowerOfTwo: isPowerOfTwo, ceilPowerOfTwo: ceilPowerOfTwo, floorPowerOfTwo: floorPowerOfTwo, setQuaternionFromProperEuler: setQuaternionFromProperEuler }); class Vector2 { constructor( x = 0, y = 0 ) { this.x = x; this.y = y; } get width() { return this.x; } set width( value ) { this.x = value; } get height() { return this.y; } set height( value ) { this.y = value; } set( x, y ) { this.x = x; this.y = y; return this; } setScalar( scalar ) { this.x = scalar; this.y = scalar; return this; } setX( x ) { this.x = x; return this; } setY( y ) { this.y = y; return this; } setComponent( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; default: throw new Error( 'index is out of range: ' + index ); } return this; } getComponent( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; default: throw new Error( 'index is out of range: ' + index ); } } clone() { return new this.constructor( this.x, this.y ); } copy( v ) { this.x = v.x; this.y = v.y; return this; } add( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w ); } this.x += v.x; this.y += v.y; return this; } addScalar( s ) { this.x += s; this.y += s; return this; } addVectors( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; return this; } addScaledVector( v, s ) { this.x += v.x * s; this.y += v.y * s; return this; } sub( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w ); } this.x -= v.x; this.y -= v.y; return this; } subScalar( s ) { this.x -= s; this.y -= s; return this; } subVectors( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; return this; } multiply( v ) { this.x *= v.x; this.y *= v.y; return this; } multiplyScalar( scalar ) { this.x *= scalar; this.y *= scalar; return this; } divide( v ) { this.x /= v.x; this.y /= v.y; return this; } divideScalar( scalar ) { return this.multiplyScalar( 1 / scalar ); } applyMatrix3( m ) { const x = this.x, y = this.y; const e = m.elements; this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ]; this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ]; return this; } min( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); return this; } max( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); return this; } clamp( min, max ) { // assumes min < max, componentwise this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); return this; } clampScalar( minVal, maxVal ) { this.x = Math.max( minVal, Math.min( maxVal, this.x ) ); this.y = Math.max( minVal, Math.min( maxVal, this.y ) ); return this; } clampLength( min, max ) { const length = this.length(); return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) ); } floor() { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); return this; } ceil() { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); return this; } round() { this.x = Math.round( this.x ); this.y = Math.round( this.y ); return this; } roundToZero() { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); return this; } negate() { this.x = - this.x; this.y = - this.y; return this; } dot( v ) { return this.x * v.x + this.y * v.y; } cross( v ) { return this.x * v.y - this.y * v.x; } lengthSq() { return this.x * this.x + this.y * this.y; } length() { return Math.sqrt( this.x * this.x + this.y * this.y ); } manhattanLength() { return Math.abs( this.x ) + Math.abs( this.y ); } normalize() { return this.divideScalar( this.length() || 1 ); } angle() { // computes the angle in radians with respect to the positive x-axis const angle = Math.atan2( - this.y, - this.x ) + Math.PI; return angle; } distanceTo( v ) { return Math.sqrt( this.distanceToSquared( v ) ); } distanceToSquared( v ) { const dx = this.x - v.x, dy = this.y - v.y; return dx * dx + dy * dy; } manhattanDistanceTo( v ) { return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ); } setLength( length ) { return this.normalize().multiplyScalar( length ); } lerp( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; return this; } lerpVectors( v1, v2, alpha ) { this.x = v1.x + ( v2.x - v1.x ) * alpha; this.y = v1.y + ( v2.y - v1.y ) * alpha; return this; } equals( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) ); } fromArray( array, offset = 0 ) { this.x = array[ offset ]; this.y = array[ offset + 1 ]; return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this.x; array[ offset + 1 ] = this.y; return array; } fromBufferAttribute( attribute, index, offset ) { if ( offset !== undefined ) { console.warn( 'THREE.Vector2: offset has been removed from .fromBufferAttribute().' ); } this.x = attribute.getX( index ); this.y = attribute.getY( index ); return this; } rotateAround( center, angle ) { const c = Math.cos( angle ), s = Math.sin( angle ); const x = this.x - center.x; const y = this.y - center.y; this.x = x * c - y * s + center.x; this.y = x * s + y * c + center.y; return this; } random() { this.x = Math.random(); this.y = Math.random(); return this; } } Vector2.prototype.isVector2 = true; class Matrix3 { constructor() { this.elements = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ]; if ( arguments.length > 0 ) { console.error( 'THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.' ); } } set( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) { const te = this.elements; te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31; te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32; te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33; return this; } identity() { this.set( 1, 0, 0, 0, 1, 0, 0, 0, 1 ); return this; } copy( m ) { const te = this.elements; const me = m.elements; te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ]; return this; } extractBasis( xAxis, yAxis, zAxis ) { xAxis.setFromMatrix3Column( this, 0 ); yAxis.setFromMatrix3Column( this, 1 ); zAxis.setFromMatrix3Column( this, 2 ); return this; } setFromMatrix4( m ) { const me = m.elements; this.set( me[ 0 ], me[ 4 ], me[ 8 ], me[ 1 ], me[ 5 ], me[ 9 ], me[ 2 ], me[ 6 ], me[ 10 ] ); return this; } multiply( m ) { return this.multiplyMatrices( this, m ); } premultiply( m ) { return this.multiplyMatrices( m, this ); } multiplyMatrices( a, b ) { const ae = a.elements; const be = b.elements; const te = this.elements; const a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ]; const a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ]; const a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ]; const b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ]; const b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ]; const b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ]; te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31; te[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32; te[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33; te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31; te[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32; te[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33; te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31; te[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32; te[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33; return this; } multiplyScalar( s ) { const te = this.elements; te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s; te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s; te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s; return this; } determinant() { const te = this.elements; const a = te[ 0 ], b = te[ 1 ], c = te[ 2 ], d = te[ 3 ], e = te[ 4 ], f = te[ 5 ], g = te[ 6 ], h = te[ 7 ], i = te[ 8 ]; return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g; } invert() { const te = this.elements, n11 = te[ 0 ], n21 = te[ 1 ], n31 = te[ 2 ], n12 = te[ 3 ], n22 = te[ 4 ], n32 = te[ 5 ], n13 = te[ 6 ], n23 = te[ 7 ], n33 = te[ 8 ], t11 = n33 * n22 - n32 * n23, t12 = n32 * n13 - n33 * n12, t13 = n23 * n12 - n22 * n13, det = n11 * t11 + n21 * t12 + n31 * t13; if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0 ); const detInv = 1 / det; te[ 0 ] = t11 * detInv; te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv; te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv; te[ 3 ] = t12 * detInv; te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv; te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv; te[ 6 ] = t13 * detInv; te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv; te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv; return this; } transpose() { let tmp; const m = this.elements; tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp; tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp; tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp; return this; } getNormalMatrix( matrix4 ) { return this.setFromMatrix4( matrix4 ).invert().transpose(); } transposeIntoArray( r ) { const m = this.elements; r[ 0 ] = m[ 0 ]; r[ 1 ] = m[ 3 ]; r[ 2 ] = m[ 6 ]; r[ 3 ] = m[ 1 ]; r[ 4 ] = m[ 4 ]; r[ 5 ] = m[ 7 ]; r[ 6 ] = m[ 2 ]; r[ 7 ] = m[ 5 ]; r[ 8 ] = m[ 8 ]; return this; } setUvTransform( tx, ty, sx, sy, rotation, cx, cy ) { const c = Math.cos( rotation ); const s = Math.sin( rotation ); this.set( sx * c, sx * s, - sx * ( c * cx + s * cy ) + cx + tx, - sy * s, sy * c, - sy * ( - s * cx + c * cy ) + cy + ty, 0, 0, 1 ); return this; } scale( sx, sy ) { const te = this.elements; te[ 0 ] *= sx; te[ 3 ] *= sx; te[ 6 ] *= sx; te[ 1 ] *= sy; te[ 4 ] *= sy; te[ 7 ] *= sy; return this; } rotate( theta ) { const c = Math.cos( theta ); const s = Math.sin( theta ); const te = this.elements; const a11 = te[ 0 ], a12 = te[ 3 ], a13 = te[ 6 ]; const a21 = te[ 1 ], a22 = te[ 4 ], a23 = te[ 7 ]; te[ 0 ] = c * a11 + s * a21; te[ 3 ] = c * a12 + s * a22; te[ 6 ] = c * a13 + s * a23; te[ 1 ] = - s * a11 + c * a21; te[ 4 ] = - s * a12 + c * a22; te[ 7 ] = - s * a13 + c * a23; return this; } translate( tx, ty ) { const te = this.elements; te[ 0 ] += tx * te[ 2 ]; te[ 3 ] += tx * te[ 5 ]; te[ 6 ] += tx * te[ 8 ]; te[ 1 ] += ty * te[ 2 ]; te[ 4 ] += ty * te[ 5 ]; te[ 7 ] += ty * te[ 8 ]; return this; } equals( matrix ) { const te = this.elements; const me = matrix.elements; for ( let i = 0; i < 9; i ++ ) { if ( te[ i ] !== me[ i ] ) return false; } return true; } fromArray( array, offset = 0 ) { for ( let i = 0; i < 9; i ++ ) { this.elements[ i ] = array[ i + offset ]; } return this; } toArray( array = [], offset = 0 ) { const te = this.elements; array[ offset ] = te[ 0 ]; array[ offset + 1 ] = te[ 1 ]; array[ offset + 2 ] = te[ 2 ]; array[ offset + 3 ] = te[ 3 ]; array[ offset + 4 ] = te[ 4 ]; array[ offset + 5 ] = te[ 5 ]; array[ offset + 6 ] = te[ 6 ]; array[ offset + 7 ] = te[ 7 ]; array[ offset + 8 ] = te[ 8 ]; return array; } clone() { return new this.constructor().fromArray( this.elements ); } } Matrix3.prototype.isMatrix3 = true; let _canvas; class ImageUtils { static getDataURL( image ) { if ( /^data:/i.test( image.src ) ) { return image.src; } if ( typeof HTMLCanvasElement == 'undefined' ) { return image.src; } let canvas; if ( image instanceof HTMLCanvasElement ) { canvas = image; } else { if ( _canvas === undefined ) _canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ); _canvas.width = image.width; _canvas.height = image.height; const context = _canvas.getContext( '2d' ); if ( image instanceof ImageData ) { context.putImageData( image, 0, 0 ); } else { context.drawImage( image, 0, 0, image.width, image.height ); } canvas = _canvas; } if ( canvas.width > 2048 || canvas.height > 2048 ) { console.warn( 'THREE.ImageUtils.getDataURL: Image converted to jpg for performance reasons', image ); return canvas.toDataURL( 'image/jpeg', 0.6 ); } else { return canvas.toDataURL( 'image/png' ); } } } let textureId = 0; class Texture extends EventDispatcher { constructor( image = Texture.DEFAULT_IMAGE, mapping = Texture.DEFAULT_MAPPING, wrapS = ClampToEdgeWrapping, wrapT = ClampToEdgeWrapping, magFilter = LinearFilter, minFilter = LinearMipmapLinearFilter, format = RGBAFormat, type = UnsignedByteType, anisotropy = 1, encoding = LinearEncoding ) { super(); Object.defineProperty( this, 'id', { value: textureId ++ } ); this.uuid = generateUUID(); this.name = ''; this.image = image; this.mipmaps = []; this.mapping = mapping; this.wrapS = wrapS; this.wrapT = wrapT; this.magFilter = magFilter; this.minFilter = minFilter; this.anisotropy = anisotropy; this.format = format; this.internalFormat = null; this.type = type; this.offset = new Vector2( 0, 0 ); this.repeat = new Vector2( 1, 1 ); this.center = new Vector2( 0, 0 ); this.rotation = 0; this.matrixAutoUpdate = true; this.matrix = new Matrix3(); this.generateMipmaps = true; this.premultiplyAlpha = false; this.flipY = true; this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml) // Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap. // // Also changing the encoding after already used by a Material will not automatically make the Material // update. You need to explicitly call Material.needsUpdate to trigger it to recompile. this.encoding = encoding; this.version = 0; this.onUpdate = null; this.isRenderTargetTexture = false; } updateMatrix() { this.matrix.setUvTransform( this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y ); } clone() { return new this.constructor().copy( this ); } copy( source ) { this.name = source.name; this.image = source.image; this.mipmaps = source.mipmaps.slice( 0 ); this.mapping = source.mapping; this.wrapS = source.wrapS; this.wrapT = source.wrapT; this.magFilter = source.magFilter; this.minFilter = source.minFilter; this.anisotropy = source.anisotropy; this.format = source.format; this.internalFormat = source.internalFormat; this.type = source.type; this.offset.copy( source.offset ); this.repeat.copy( source.repeat ); this.center.copy( source.center ); this.rotation = source.rotation; this.matrixAutoUpdate = source.matrixAutoUpdate; this.matrix.copy( source.matrix ); this.generateMipmaps = source.generateMipmaps; this.premultiplyAlpha = source.premultiplyAlpha; this.flipY = source.flipY; this.unpackAlignment = source.unpackAlignment; this.encoding = source.encoding; return this; } toJSON( meta ) { const isRootObject = ( meta === undefined || typeof meta === 'string' ); if ( ! isRootObject && meta.textures[ this.uuid ] !== undefined ) { return meta.textures[ this.uuid ]; } const output = { metadata: { version: 4.5, type: 'Texture', generator: 'Texture.toJSON' }, uuid: this.uuid, name: this.name, mapping: this.mapping, repeat: [ this.repeat.x, this.repeat.y ], offset: [ this.offset.x, this.offset.y ], center: [ this.center.x, this.center.y ], rotation: this.rotation, wrap: [ this.wrapS, this.wrapT ], format: this.format, type: this.type, encoding: this.encoding, minFilter: this.minFilter, magFilter: this.magFilter, anisotropy: this.anisotropy, flipY: this.flipY, premultiplyAlpha: this.premultiplyAlpha, unpackAlignment: this.unpackAlignment }; if ( this.image !== undefined ) { // TODO: Move to THREE.Image const image = this.image; if ( image.uuid === undefined ) { image.uuid = generateUUID(); // UGH } if ( ! isRootObject && meta.images[ image.uuid ] === undefined ) { let url; if ( Array.isArray( image ) ) { // process array of images e.g. CubeTexture url = []; for ( let i = 0, l = image.length; i < l; i ++ ) { // check cube texture with data textures if ( image[ i ].isDataTexture ) { url.push( serializeImage( image[ i ].image ) ); } else { url.push( serializeImage( image[ i ] ) ); } } } else { // process single image url = serializeImage( image ); } meta.images[ image.uuid ] = { uuid: image.uuid, url: url }; } output.image = image.uuid; } if ( ! isRootObject ) { meta.textures[ this.uuid ] = output; } return output; } dispose() { this.dispatchEvent( { type: 'dispose' } ); } transformUv( uv ) { if ( this.mapping !== UVMapping ) return uv; uv.applyMatrix3( this.matrix ); if ( uv.x < 0 || uv.x > 1 ) { switch ( this.wrapS ) { case RepeatWrapping: uv.x = uv.x - Math.floor( uv.x ); break; case ClampToEdgeWrapping: uv.x = uv.x < 0 ? 0 : 1; break; case MirroredRepeatWrapping: if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) { uv.x = Math.ceil( uv.x ) - uv.x; } else { uv.x = uv.x - Math.floor( uv.x ); } break; } } if ( uv.y < 0 || uv.y > 1 ) { switch ( this.wrapT ) { case RepeatWrapping: uv.y = uv.y - Math.floor( uv.y ); break; case ClampToEdgeWrapping: uv.y = uv.y < 0 ? 0 : 1; break; case MirroredRepeatWrapping: if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) { uv.y = Math.ceil( uv.y ) - uv.y; } else { uv.y = uv.y - Math.floor( uv.y ); } break; } } if ( this.flipY ) { uv.y = 1 - uv.y; } return uv; } set needsUpdate( value ) { if ( value === true ) this.version ++; } } Texture.DEFAULT_IMAGE = undefined; Texture.DEFAULT_MAPPING = UVMapping; Texture.prototype.isTexture = true; function serializeImage( image ) { if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) || ( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) || ( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ) { // default images return ImageUtils.getDataURL( image ); } else { if ( image.data ) { // images of DataTexture return { data: Array.prototype.slice.call( image.data ), width: image.width, height: image.height, type: image.data.constructor.name }; } else { console.warn( 'THREE.Texture: Unable to serialize Texture.' ); return {}; } } } class Vector4 { constructor( x = 0, y = 0, z = 0, w = 1 ) { this.x = x; this.y = y; this.z = z; this.w = w; } get width() { return this.z; } set width( value ) { this.z = value; } get height() { return this.w; } set height( value ) { this.w = value; } set( x, y, z, w ) { this.x = x; this.y = y; this.z = z; this.w = w; return this; } setScalar( scalar ) { this.x = scalar; this.y = scalar; this.z = scalar; this.w = scalar; return this; } setX( x ) { this.x = x; return this; } setY( y ) { this.y = y; return this; } setZ( z ) { this.z = z; return this; } setW( w ) { this.w = w; return this; } setComponent( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; case 3: this.w = value; break; default: throw new Error( 'index is out of range: ' + index ); } return this; } getComponent( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; case 2: return this.z; case 3: return this.w; default: throw new Error( 'index is out of range: ' + index ); } } clone() { return new this.constructor( this.x, this.y, this.z, this.w ); } copy( v ) { this.x = v.x; this.y = v.y; this.z = v.z; this.w = ( v.w !== undefined ) ? v.w : 1; return this; } add( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w ); } this.x += v.x; this.y += v.y; this.z += v.z; this.w += v.w; return this; } addScalar( s ) { this.x += s; this.y += s; this.z += s; this.w += s; return this; } addVectors( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; this.w = a.w + b.w; return this; } addScaledVector( v, s ) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; this.w += v.w * s; return this; } sub( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w ); } this.x -= v.x; this.y -= v.y; this.z -= v.z; this.w -= v.w; return this; } subScalar( s ) { this.x -= s; this.y -= s; this.z -= s; this.w -= s; return this; } subVectors( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; this.w = a.w - b.w; return this; } multiply( v ) { this.x *= v.x; this.y *= v.y; this.z *= v.z; this.w *= v.w; return this; } multiplyScalar( scalar ) { this.x *= scalar; this.y *= scalar; this.z *= scalar; this.w *= scalar; return this; } applyMatrix4( m ) { const x = this.x, y = this.y, z = this.z, w = this.w; const e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w; this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w; return this; } divideScalar( scalar ) { return this.multiplyScalar( 1 / scalar ); } setAxisAngleFromQuaternion( q ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm // q is assumed to be normalized this.w = 2 * Math.acos( q.w ); const s = Math.sqrt( 1 - q.w * q.w ); if ( s < 0.0001 ) { this.x = 1; this.y = 0; this.z = 0; } else { this.x = q.x / s; this.y = q.y / s; this.z = q.z / s; } return this; } setAxisAngleFromRotationMatrix( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) let angle, x, y, z; // variables for result const epsilon = 0.01, // margin to allow for rounding errors epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees te = m.elements, m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; if ( ( Math.abs( m12 - m21 ) < epsilon ) && ( Math.abs( m13 - m31 ) < epsilon ) && ( Math.abs( m23 - m32 ) < epsilon ) ) { // singularity found // first check for identity matrix which must have +1 for all terms // in leading diagonal and zero in other terms if ( ( Math.abs( m12 + m21 ) < epsilon2 ) && ( Math.abs( m13 + m31 ) < epsilon2 ) && ( Math.abs( m23 + m32 ) < epsilon2 ) && ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) { // this singularity is identity matrix so angle = 0 this.set( 1, 0, 0, 0 ); return this; // zero angle, arbitrary axis } // otherwise this singularity is angle = 180 angle = Math.PI; const xx = ( m11 + 1 ) / 2; const yy = ( m22 + 1 ) / 2; const zz = ( m33 + 1 ) / 2; const xy = ( m12 + m21 ) / 4; const xz = ( m13 + m31 ) / 4; const yz = ( m23 + m32 ) / 4; if ( ( xx > yy ) && ( xx > zz ) ) { // m11 is the largest diagonal term if ( xx < epsilon ) { x = 0; y = 0.707106781; z = 0.707106781; } else { x = Math.sqrt( xx ); y = xy / x; z = xz / x; } } else if ( yy > zz ) { // m22 is the largest diagonal term if ( yy < epsilon ) { x = 0.707106781; y = 0; z = 0.707106781; } else { y = Math.sqrt( yy ); x = xy / y; z = yz / y; } } else { // m33 is the largest diagonal term so base result on this if ( zz < epsilon ) { x = 0.707106781; y = 0.707106781; z = 0; } else { z = Math.sqrt( zz ); x = xz / z; y = yz / z; } } this.set( x, y, z, angle ); return this; // return 180 deg rotation } // as we have reached here there are no singularities so we can handle normally let s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) + ( m13 - m31 ) * ( m13 - m31 ) + ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize if ( Math.abs( s ) < 0.001 ) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be // caught by singularity test above, but I've left it in just in case this.x = ( m32 - m23 ) / s; this.y = ( m13 - m31 ) / s; this.z = ( m21 - m12 ) / s; this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 ); return this; } min( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); this.z = Math.min( this.z, v.z ); this.w = Math.min( this.w, v.w ); return this; } max( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); this.z = Math.max( this.z, v.z ); this.w = Math.max( this.w, v.w ); return this; } clamp( min, max ) { // assumes min < max, componentwise this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); this.z = Math.max( min.z, Math.min( max.z, this.z ) ); this.w = Math.max( min.w, Math.min( max.w, this.w ) ); return this; } clampScalar( minVal, maxVal ) { this.x = Math.max( minVal, Math.min( maxVal, this.x ) ); this.y = Math.max( minVal, Math.min( maxVal, this.y ) ); this.z = Math.max( minVal, Math.min( maxVal, this.z ) ); this.w = Math.max( minVal, Math.min( maxVal, this.w ) ); return this; } clampLength( min, max ) { const length = this.length(); return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) ); } floor() { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); this.w = Math.floor( this.w ); return this; } ceil() { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); this.w = Math.ceil( this.w ); return this; } round() { this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); this.w = Math.round( this.w ); return this; } roundToZero() { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z ); this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w ); return this; } negate() { this.x = - this.x; this.y = - this.y; this.z = - this.z; this.w = - this.w; return this; } dot( v ) { return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w; } lengthSq() { return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w; } length() { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w ); } manhattanLength() { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w ); } normalize() { return this.divideScalar( this.length() || 1 ); } setLength( length ) { return this.normalize().multiplyScalar( length ); } lerp( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; this.w += ( v.w - this.w ) * alpha; return this; } lerpVectors( v1, v2, alpha ) { this.x = v1.x + ( v2.x - v1.x ) * alpha; this.y = v1.y + ( v2.y - v1.y ) * alpha; this.z = v1.z + ( v2.z - v1.z ) * alpha; this.w = v1.w + ( v2.w - v1.w ) * alpha; return this; } equals( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) ); } fromArray( array, offset = 0 ) { this.x = array[ offset ]; this.y = array[ offset + 1 ]; this.z = array[ offset + 2 ]; this.w = array[ offset + 3 ]; return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this.x; array[ offset + 1 ] = this.y; array[ offset + 2 ] = this.z; array[ offset + 3 ] = this.w; return array; } fromBufferAttribute( attribute, index, offset ) { if ( offset !== undefined ) { console.warn( 'THREE.Vector4: offset has been removed from .fromBufferAttribute().' ); } this.x = attribute.getX( index ); this.y = attribute.getY( index ); this.z = attribute.getZ( index ); this.w = attribute.getW( index ); return this; } random() { this.x = Math.random(); this.y = Math.random(); this.z = Math.random(); this.w = Math.random(); return this; } } Vector4.prototype.isVector4 = true; /* In options, we can specify: * Texture parameters for an auto-generated target texture * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers */ class WebGLRenderTarget extends EventDispatcher { constructor( width, height, options = {} ) { super(); this.width = width; this.height = height; this.depth = 1; this.scissor = new Vector4( 0, 0, width, height ); this.scissorTest = false; this.viewport = new Vector4( 0, 0, width, height ); this.texture = new Texture( undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding ); this.texture.isRenderTargetTexture = true; this.texture.image = { width: width, height: height, depth: 1 }; this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false; this.texture.internalFormat = options.internalFormat !== undefined ? options.internalFormat : null; this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter; this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true; this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : false; this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null; } setTexture( texture ) { texture.image = { width: this.width, height: this.height, depth: this.depth }; this.texture = texture; } setSize( width, height, depth = 1 ) { if ( this.width !== width || this.height !== height || this.depth !== depth ) { this.width = width; this.height = height; this.depth = depth; this.texture.image.width = width; this.texture.image.height = height; this.texture.image.depth = depth; this.dispose(); } this.viewport.set( 0, 0, width, height ); this.scissor.set( 0, 0, width, height ); } clone() { return new this.constructor().copy( this ); } copy( source ) { this.width = source.width; this.height = source.height; this.depth = source.depth; this.viewport.copy( source.viewport ); this.texture = source.texture.clone(); this.texture.image = { ...this.texture.image }; // See #20328. this.depthBuffer = source.depthBuffer; this.stencilBuffer = source.stencilBuffer; this.depthTexture = source.depthTexture; return this; } dispose() { this.dispatchEvent( { type: 'dispose' } ); } } WebGLRenderTarget.prototype.isWebGLRenderTarget = true; class WebGLMultipleRenderTargets extends WebGLRenderTarget { constructor( width, height, count ) { super( width, height ); const texture = this.texture; this.texture = []; for ( let i = 0; i < count; i ++ ) { this.texture[ i ] = texture.clone(); } } setSize( width, height, depth = 1 ) { if ( this.width !== width || this.height !== height || this.depth !== depth ) { this.width = width; this.height = height; this.depth = depth; for ( let i = 0, il = this.texture.length; i < il; i ++ ) { this.texture[ i ].image.width = width; this.texture[ i ].image.height = height; this.texture[ i ].image.depth = depth; } this.dispose(); } this.viewport.set( 0, 0, width, height ); this.scissor.set( 0, 0, width, height ); return this; } copy( source ) { this.dispose(); this.width = source.width; this.height = source.height; this.depth = source.depth; this.viewport.set( 0, 0, this.width, this.height ); this.scissor.set( 0, 0, this.width, this.height ); this.depthBuffer = source.depthBuffer; this.stencilBuffer = source.stencilBuffer; this.depthTexture = source.depthTexture; this.texture.length = 0; for ( let i = 0, il = source.texture.length; i < il; i ++ ) { this.texture[ i ] = source.texture[ i ].clone(); } return this; } } WebGLMultipleRenderTargets.prototype.isWebGLMultipleRenderTargets = true; class WebGLMultisampleRenderTarget extends WebGLRenderTarget { constructor( width, height, options ) { super( width, height, options ); this.samples = 4; } copy( source ) { super.copy.call( this, source ); this.samples = source.samples; return this; } } WebGLMultisampleRenderTarget.prototype.isWebGLMultisampleRenderTarget = true; class Quaternion { constructor( x = 0, y = 0, z = 0, w = 1 ) { this._x = x; this._y = y; this._z = z; this._w = w; } static slerp( qa, qb, qm, t ) { console.warn( 'THREE.Quaternion: Static .slerp() has been deprecated. Use qm.slerpQuaternions( qa, qb, t ) instead.' ); return qm.slerpQuaternions( qa, qb, t ); } static slerpFlat( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) { // fuzz-free, array-based Quaternion SLERP operation let x0 = src0[ srcOffset0 + 0 ], y0 = src0[ srcOffset0 + 1 ], z0 = src0[ srcOffset0 + 2 ], w0 = src0[ srcOffset0 + 3 ]; const x1 = src1[ srcOffset1 + 0 ], y1 = src1[ srcOffset1 + 1 ], z1 = src1[ srcOffset1 + 2 ], w1 = src1[ srcOffset1 + 3 ]; if ( t === 0 ) { dst[ dstOffset + 0 ] = x0; dst[ dstOffset + 1 ] = y0; dst[ dstOffset + 2 ] = z0; dst[ dstOffset + 3 ] = w0; return; } if ( t === 1 ) { dst[ dstOffset + 0 ] = x1; dst[ dstOffset + 1 ] = y1; dst[ dstOffset + 2 ] = z1; dst[ dstOffset + 3 ] = w1; return; } if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) { let s = 1 - t; const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1, dir = ( cos >= 0 ? 1 : - 1 ), sqrSin = 1 - cos * cos; // Skip the Slerp for tiny steps to avoid numeric problems: if ( sqrSin > Number.EPSILON ) { const sin = Math.sqrt( sqrSin ), len = Math.atan2( sin, cos * dir ); s = Math.sin( s * len ) / sin; t = Math.sin( t * len ) / sin; } const tDir = t * dir; x0 = x0 * s + x1 * tDir; y0 = y0 * s + y1 * tDir; z0 = z0 * s + z1 * tDir; w0 = w0 * s + w1 * tDir; // Normalize in case we just did a lerp: if ( s === 1 - t ) { const f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 ); x0 *= f; y0 *= f; z0 *= f; w0 *= f; } } dst[ dstOffset ] = x0; dst[ dstOffset + 1 ] = y0; dst[ dstOffset + 2 ] = z0; dst[ dstOffset + 3 ] = w0; } static multiplyQuaternionsFlat( dst, dstOffset, src0, srcOffset0, src1, srcOffset1 ) { const x0 = src0[ srcOffset0 ]; const y0 = src0[ srcOffset0 + 1 ]; const z0 = src0[ srcOffset0 + 2 ]; const w0 = src0[ srcOffset0 + 3 ]; const x1 = src1[ srcOffset1 ]; const y1 = src1[ srcOffset1 + 1 ]; const z1 = src1[ srcOffset1 + 2 ]; const w1 = src1[ srcOffset1 + 3 ]; dst[ dstOffset ] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1; dst[ dstOffset + 1 ] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1; dst[ dstOffset + 2 ] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1; dst[ dstOffset + 3 ] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1; return dst; } get x() { return this._x; } set x( value ) { this._x = value; this._onChangeCallback(); } get y() { return this._y; } set y( value ) { this._y = value; this._onChangeCallback(); } get z() { return this._z; } set z( value ) { this._z = value; this._onChangeCallback(); } get w() { return this._w; } set w( value ) { this._w = value; this._onChangeCallback(); } set( x, y, z, w ) { this._x = x; this._y = y; this._z = z; this._w = w; this._onChangeCallback(); return this; } clone() { return new this.constructor( this._x, this._y, this._z, this._w ); } copy( quaternion ) { this._x = quaternion.x; this._y = quaternion.y; this._z = quaternion.z; this._w = quaternion.w; this._onChangeCallback(); return this; } setFromEuler( euler, update ) { if ( ! ( euler && euler.isEuler ) ) { throw new Error( 'THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.' ); } const x = euler._x, y = euler._y, z = euler._z, order = euler._order; // http://www.mathworks.com/matlabcentral/fileexchange/ // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/ // content/SpinCalc.m const cos = Math.cos; const sin = Math.sin; const c1 = cos( x / 2 ); const c2 = cos( y / 2 ); const c3 = cos( z / 2 ); const s1 = sin( x / 2 ); const s2 = sin( y / 2 ); const s3 = sin( z / 2 ); switch ( order ) { case 'XYZ': this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case 'YXZ': this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; case 'ZXY': this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case 'ZYX': this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; case 'YZX': this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case 'XZY': this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; default: console.warn( 'THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order ); } if ( update !== false ) this._onChangeCallback(); return this; } setFromAxisAngle( axis, angle ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm // assumes axis is normalized const halfAngle = angle / 2, s = Math.sin( halfAngle ); this._x = axis.x * s; this._y = axis.y * s; this._z = axis.z * s; this._w = Math.cos( halfAngle ); this._onChangeCallback(); return this; } setFromRotationMatrix( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) const te = m.elements, m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ], trace = m11 + m22 + m33; if ( trace > 0 ) { const s = 0.5 / Math.sqrt( trace + 1.0 ); this._w = 0.25 / s; this._x = ( m32 - m23 ) * s; this._y = ( m13 - m31 ) * s; this._z = ( m21 - m12 ) * s; } else if ( m11 > m22 && m11 > m33 ) { const s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 ); this._w = ( m32 - m23 ) / s; this._x = 0.25 * s; this._y = ( m12 + m21 ) / s; this._z = ( m13 + m31 ) / s; } else if ( m22 > m33 ) { const s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 ); this._w = ( m13 - m31 ) / s; this._x = ( m12 + m21 ) / s; this._y = 0.25 * s; this._z = ( m23 + m32 ) / s; } else { const s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 ); this._w = ( m21 - m12 ) / s; this._x = ( m13 + m31 ) / s; this._y = ( m23 + m32 ) / s; this._z = 0.25 * s; } this._onChangeCallback(); return this; } setFromUnitVectors( vFrom, vTo ) { // assumes direction vectors vFrom and vTo are normalized let r = vFrom.dot( vTo ) + 1; if ( r < Number.EPSILON ) { // vFrom and vTo point in opposite directions r = 0; if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) { this._x = - vFrom.y; this._y = vFrom.x; this._z = 0; this._w = r; } else { this._x = 0; this._y = - vFrom.z; this._z = vFrom.y; this._w = r; } } else { // crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3 this._x = vFrom.y * vTo.z - vFrom.z * vTo.y; this._y = vFrom.z * vTo.x - vFrom.x * vTo.z; this._z = vFrom.x * vTo.y - vFrom.y * vTo.x; this._w = r; } return this.normalize(); } angleTo( q ) { return 2 * Math.acos( Math.abs( clamp( this.dot( q ), - 1, 1 ) ) ); } rotateTowards( q, step ) { const angle = this.angleTo( q ); if ( angle === 0 ) return this; const t = Math.min( 1, step / angle ); this.slerp( q, t ); return this; } identity() { return this.set( 0, 0, 0, 1 ); } invert() { // quaternion is assumed to have unit length return this.conjugate(); } conjugate() { this._x *= - 1; this._y *= - 1; this._z *= - 1; this._onChangeCallback(); return this; } dot( v ) { return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w; } lengthSq() { return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w; } length() { return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w ); } normalize() { let l = this.length(); if ( l === 0 ) { this._x = 0; this._y = 0; this._z = 0; this._w = 1; } else { l = 1 / l; this._x = this._x * l; this._y = this._y * l; this._z = this._z * l; this._w = this._w * l; } this._onChangeCallback(); return this; } multiply( q, p ) { if ( p !== undefined ) { console.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' ); return this.multiplyQuaternions( q, p ); } return this.multiplyQuaternions( this, q ); } premultiply( q ) { return this.multiplyQuaternions( q, this ); } multiplyQuaternions( a, b ) { // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm const qax = a._x, qay = a._y, qaz = a._z, qaw = a._w; const qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w; this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; this._onChangeCallback(); return this; } slerp( qb, t ) { if ( t === 0 ) return this; if ( t === 1 ) return this.copy( qb ); const x = this._x, y = this._y, z = this._z, w = this._w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z; if ( cosHalfTheta < 0 ) { this._w = - qb._w; this._x = - qb._x; this._y = - qb._y; this._z = - qb._z; cosHalfTheta = - cosHalfTheta; } else { this.copy( qb ); } if ( cosHalfTheta >= 1.0 ) { this._w = w; this._x = x; this._y = y; this._z = z; return this; } const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta; if ( sqrSinHalfTheta <= Number.EPSILON ) { const s = 1 - t; this._w = s * w + t * this._w; this._x = s * x + t * this._x; this._y = s * y + t * this._y; this._z = s * z + t * this._z; this.normalize(); this._onChangeCallback(); return this; } const sinHalfTheta = Math.sqrt( sqrSinHalfTheta ); const halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta ); const ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta, ratioB = Math.sin( t * halfTheta ) / sinHalfTheta; this._w = ( w * ratioA + this._w * ratioB ); this._x = ( x * ratioA + this._x * ratioB ); this._y = ( y * ratioA + this._y * ratioB ); this._z = ( z * ratioA + this._z * ratioB ); this._onChangeCallback(); return this; } slerpQuaternions( qa, qb, t ) { this.copy( qa ).slerp( qb, t ); } equals( quaternion ) { return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w ); } fromArray( array, offset = 0 ) { this._x = array[ offset ]; this._y = array[ offset + 1 ]; this._z = array[ offset + 2 ]; this._w = array[ offset + 3 ]; this._onChangeCallback(); return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this._x; array[ offset + 1 ] = this._y; array[ offset + 2 ] = this._z; array[ offset + 3 ] = this._w; return array; } fromBufferAttribute( attribute, index ) { this._x = attribute.getX( index ); this._y = attribute.getY( index ); this._z = attribute.getZ( index ); this._w = attribute.getW( index ); return this; } _onChange( callback ) { this._onChangeCallback = callback; return this; } _onChangeCallback() {} } Quaternion.prototype.isQuaternion = true; class Vector3 { constructor( x = 0, y = 0, z = 0 ) { this.x = x; this.y = y; this.z = z; } set( x, y, z ) { if ( z === undefined ) z = this.z; // sprite.scale.set(x,y) this.x = x; this.y = y; this.z = z; return this; } setScalar( scalar ) { this.x = scalar; this.y = scalar; this.z = scalar; return this; } setX( x ) { this.x = x; return this; } setY( y ) { this.y = y; return this; } setZ( z ) { this.z = z; return this; } setComponent( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; default: throw new Error( 'index is out of range: ' + index ); } return this; } getComponent( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; case 2: return this.z; default: throw new Error( 'index is out of range: ' + index ); } } clone() { return new this.constructor( this.x, this.y, this.z ); } copy( v ) { this.x = v.x; this.y = v.y; this.z = v.z; return this; } add( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w ); } this.x += v.x; this.y += v.y; this.z += v.z; return this; } addScalar( s ) { this.x += s; this.y += s; this.z += s; return this; } addVectors( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; return this; } addScaledVector( v, s ) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; return this; } sub( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w ); } this.x -= v.x; this.y -= v.y; this.z -= v.z; return this; } subScalar( s ) { this.x -= s; this.y -= s; this.z -= s; return this; } subVectors( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; return this; } multiply( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' ); return this.multiplyVectors( v, w ); } this.x *= v.x; this.y *= v.y; this.z *= v.z; return this; } multiplyScalar( scalar ) { this.x *= scalar; this.y *= scalar; this.z *= scalar; return this; } multiplyVectors( a, b ) { this.x = a.x * b.x; this.y = a.y * b.y; this.z = a.z * b.z; return this; } applyEuler( euler ) { if ( ! ( euler && euler.isEuler ) ) { console.error( 'THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.' ); } return this.applyQuaternion( _quaternion$4.setFromEuler( euler ) ); } applyAxisAngle( axis, angle ) { return this.applyQuaternion( _quaternion$4.setFromAxisAngle( axis, angle ) ); } applyMatrix3( m ) { const x = this.x, y = this.y, z = this.z; const e = m.elements; this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z; this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z; this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z; return this; } applyNormalMatrix( m ) { return this.applyMatrix3( m ).normalize(); } applyMatrix4( m ) { const x = this.x, y = this.y, z = this.z; const e = m.elements; const w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] ); this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w; this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w; this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w; return this; } applyQuaternion( q ) { const x = this.x, y = this.y, z = this.z; const qx = q.x, qy = q.y, qz = q.z, qw = q.w; // calculate quat * vector const ix = qw * x + qy * z - qz * y; const iy = qw * y + qz * x - qx * z; const iz = qw * z + qx * y - qy * x; const iw = - qx * x - qy * y - qz * z; // calculate result * inverse quat this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy; this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz; this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx; return this; } project( camera ) { return this.applyMatrix4( camera.matrixWorldInverse ).applyMatrix4( camera.projectionMatrix ); } unproject( camera ) { return this.applyMatrix4( camera.projectionMatrixInverse ).applyMatrix4( camera.matrixWorld ); } transformDirection( m ) { // input: THREE.Matrix4 affine matrix // vector interpreted as a direction const x = this.x, y = this.y, z = this.z; const e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z; return this.normalize(); } divide( v ) { this.x /= v.x; this.y /= v.y; this.z /= v.z; return this; } divideScalar( scalar ) { return this.multiplyScalar( 1 / scalar ); } min( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); this.z = Math.min( this.z, v.z ); return this; } max( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); this.z = Math.max( this.z, v.z ); return this; } clamp( min, max ) { // assumes min < max, componentwise this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); this.z = Math.max( min.z, Math.min( max.z, this.z ) ); return this; } clampScalar( minVal, maxVal ) { this.x = Math.max( minVal, Math.min( maxVal, this.x ) ); this.y = Math.max( minVal, Math.min( maxVal, this.y ) ); this.z = Math.max( minVal, Math.min( maxVal, this.z ) ); return this; } clampLength( min, max ) { const length = this.length(); return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) ); } floor() { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); return this; } ceil() { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); return this; } round() { this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); return this; } roundToZero() { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z ); return this; } negate() { this.x = - this.x; this.y = - this.y; this.z = - this.z; return this; } dot( v ) { return this.x * v.x + this.y * v.y + this.z * v.z; } // TODO lengthSquared? lengthSq() { return this.x * this.x + this.y * this.y + this.z * this.z; } length() { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z ); } manhattanLength() { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ); } normalize() { return this.divideScalar( this.length() || 1 ); } setLength( length ) { return this.normalize().multiplyScalar( length ); } lerp( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; return this; } lerpVectors( v1, v2, alpha ) { this.x = v1.x + ( v2.x - v1.x ) * alpha; this.y = v1.y + ( v2.y - v1.y ) * alpha; this.z = v1.z + ( v2.z - v1.z ) * alpha; return this; } cross( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' ); return this.crossVectors( v, w ); } return this.crossVectors( this, v ); } crossVectors( a, b ) { const ax = a.x, ay = a.y, az = a.z; const bx = b.x, by = b.y, bz = b.z; this.x = ay * bz - az * by; this.y = az * bx - ax * bz; this.z = ax * by - ay * bx; return this; } projectOnVector( v ) { const denominator = v.lengthSq(); if ( denominator === 0 ) return this.set( 0, 0, 0 ); const scalar = v.dot( this ) / denominator; return this.copy( v ).multiplyScalar( scalar ); } projectOnPlane( planeNormal ) { _vector$c.copy( this ).projectOnVector( planeNormal ); return this.sub( _vector$c ); } reflect( normal ) { // reflect incident vector off plane orthogonal to normal // normal is assumed to have unit length return this.sub( _vector$c.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) ); } angleTo( v ) { const denominator = Math.sqrt( this.lengthSq() * v.lengthSq() ); if ( denominator === 0 ) return Math.PI / 2; const theta = this.dot( v ) / denominator; // clamp, to handle numerical problems return Math.acos( clamp( theta, - 1, 1 ) ); } distanceTo( v ) { return Math.sqrt( this.distanceToSquared( v ) ); } distanceToSquared( v ) { const dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z; return dx * dx + dy * dy + dz * dz; } manhattanDistanceTo( v ) { return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z ); } setFromSpherical( s ) { return this.setFromSphericalCoords( s.radius, s.phi, s.theta ); } setFromSphericalCoords( radius, phi, theta ) { const sinPhiRadius = Math.sin( phi ) * radius; this.x = sinPhiRadius * Math.sin( theta ); this.y = Math.cos( phi ) * radius; this.z = sinPhiRadius * Math.cos( theta ); return this; } setFromCylindrical( c ) { return this.setFromCylindricalCoords( c.radius, c.theta, c.y ); } setFromCylindricalCoords( radius, theta, y ) { this.x = radius * Math.sin( theta ); this.y = y; this.z = radius * Math.cos( theta ); return this; } setFromMatrixPosition( m ) { const e = m.elements; this.x = e[ 12 ]; this.y = e[ 13 ]; this.z = e[ 14 ]; return this; } setFromMatrixScale( m ) { const sx = this.setFromMatrixColumn( m, 0 ).length(); const sy = this.setFromMatrixColumn( m, 1 ).length(); const sz = this.setFromMatrixColumn( m, 2 ).length(); this.x = sx; this.y = sy; this.z = sz; return this; } setFromMatrixColumn( m, index ) { return this.fromArray( m.elements, index * 4 ); } setFromMatrix3Column( m, index ) { return this.fromArray( m.elements, index * 3 ); } equals( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) ); } fromArray( array, offset = 0 ) { this.x = array[ offset ]; this.y = array[ offset + 1 ]; this.z = array[ offset + 2 ]; return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this.x; array[ offset + 1 ] = this.y; array[ offset + 2 ] = this.z; return array; } fromBufferAttribute( attribute, index, offset ) { if ( offset !== undefined ) { console.warn( 'THREE.Vector3: offset has been removed from .fromBufferAttribute().' ); } this.x = attribute.getX( index ); this.y = attribute.getY( index ); this.z = attribute.getZ( index ); return this; } random() { this.x = Math.random(); this.y = Math.random(); this.z = Math.random(); return this; } } Vector3.prototype.isVector3 = true; const _vector$c = /*@__PURE__*/ new Vector3(); const _quaternion$4 = /*@__PURE__*/ new Quaternion(); class Box3 { constructor( min = new Vector3( + Infinity, + Infinity, + Infinity ), max = new Vector3( - Infinity, - Infinity, - Infinity ) ) { this.min = min; this.max = max; } set( min, max ) { this.min.copy( min ); this.max.copy( max ); return this; } setFromArray( array ) { let minX = + Infinity; let minY = + Infinity; let minZ = + Infinity; let maxX = - Infinity; let maxY = - Infinity; let maxZ = - Infinity; for ( let i = 0, l = array.length; i < l; i += 3 ) { const x = array[ i ]; const y = array[ i + 1 ]; const z = array[ i + 2 ]; if ( x < minX ) minX = x; if ( y < minY ) minY = y; if ( z < minZ ) minZ = z; if ( x > maxX ) maxX = x; if ( y > maxY ) maxY = y; if ( z > maxZ ) maxZ = z; } this.min.set( minX, minY, minZ ); this.max.set( maxX, maxY, maxZ ); return this; } setFromBufferAttribute( attribute ) { let minX = + Infinity; let minY = + Infinity; let minZ = + Infinity; let maxX = - Infinity; let maxY = - Infinity; let maxZ = - Infinity; for ( let i = 0, l = attribute.count; i < l; i ++ ) { const x = attribute.getX( i ); const y = attribute.getY( i ); const z = attribute.getZ( i ); if ( x < minX ) minX = x; if ( y < minY ) minY = y; if ( z < minZ ) minZ = z; if ( x > maxX ) maxX = x; if ( y > maxY ) maxY = y; if ( z > maxZ ) maxZ = z; } this.min.set( minX, minY, minZ ); this.max.set( maxX, maxY, maxZ ); return this; } setFromPoints( points ) { this.makeEmpty(); for ( let i = 0, il = points.length; i < il; i ++ ) { this.expandByPoint( points[ i ] ); } return this; } setFromCenterAndSize( center, size ) { const halfSize = _vector$b.copy( size ).multiplyScalar( 0.5 ); this.min.copy( center ).sub( halfSize ); this.max.copy( center ).add( halfSize ); return this; } setFromObject( object ) { this.makeEmpty(); return this.expandByObject( object ); } clone() { return new this.constructor().copy( this ); } copy( box ) { this.min.copy( box.min ); this.max.copy( box.max ); return this; } makeEmpty() { this.min.x = this.min.y = this.min.z = + Infinity; this.max.x = this.max.y = this.max.z = - Infinity; return this; } isEmpty() { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z ); } getCenter( target ) { return this.isEmpty() ? target.set( 0, 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 ); } getSize( target ) { return this.isEmpty() ? target.set( 0, 0, 0 ) : target.subVectors( this.max, this.min ); } expandByPoint( point ) { this.min.min( point ); this.max.max( point ); return this; } expandByVector( vector ) { this.min.sub( vector ); this.max.add( vector ); return this; } expandByScalar( scalar ) { this.min.addScalar( - scalar ); this.max.addScalar( scalar ); return this; } expandByObject( object ) { // Computes the world-axis-aligned bounding box of an object (including its children), // accounting for both the object's, and children's, world transforms object.updateWorldMatrix( false, false ); const geometry = object.geometry; if ( geometry !== undefined ) { if ( geometry.boundingBox === null ) { geometry.computeBoundingBox(); } _box$3.copy( geometry.boundingBox ); _box$3.applyMatrix4( object.matrixWorld ); this.union( _box$3 ); } const children = object.children; for ( let i = 0, l = children.length; i < l; i ++ ) { this.expandByObject( children[ i ] ); } return this; } containsPoint( point ) { return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ? false : true; } containsBox( box ) { return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y && this.min.z <= box.min.z && box.max.z <= this.max.z; } getParameter( point, target ) { // This can potentially have a divide by zero if the box // has a size dimension of 0. return target.set( ( point.x - this.min.x ) / ( this.max.x - this.min.x ), ( point.y - this.min.y ) / ( this.max.y - this.min.y ), ( point.z - this.min.z ) / ( this.max.z - this.min.z ) ); } intersectsBox( box ) { // using 6 splitting planes to rule out intersections. return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ? false : true; } intersectsSphere( sphere ) { // Find the point on the AABB closest to the sphere center. this.clampPoint( sphere.center, _vector$b ); // If that point is inside the sphere, the AABB and sphere intersect. return _vector$b.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius ); } intersectsPlane( plane ) { // We compute the minimum and maximum dot product values. If those values // are on the same side (back or front) of the plane, then there is no intersection. let min, max; if ( plane.normal.x > 0 ) { min = plane.normal.x * this.min.x; max = plane.normal.x * this.max.x; } else { min = plane.normal.x * this.max.x; max = plane.normal.x * this.min.x; } if ( plane.normal.y > 0 ) { min += plane.normal.y * this.min.y; max += plane.normal.y * this.max.y; } else { min += plane.normal.y * this.max.y; max += plane.normal.y * this.min.y; } if ( plane.normal.z > 0 ) { min += plane.normal.z * this.min.z; max += plane.normal.z * this.max.z; } else { min += plane.normal.z * this.max.z; max += plane.normal.z * this.min.z; } return ( min <= - plane.constant && max >= - plane.constant ); } intersectsTriangle( triangle ) { if ( this.isEmpty() ) { return false; } // compute box center and extents this.getCenter( _center ); _extents.subVectors( this.max, _center ); // translate triangle to aabb origin _v0$2.subVectors( triangle.a, _center ); _v1$7.subVectors( triangle.b, _center ); _v2$3.subVectors( triangle.c, _center ); // compute edge vectors for triangle _f0.subVectors( _v1$7, _v0$2 ); _f1.subVectors( _v2$3, _v1$7 ); _f2.subVectors( _v0$2, _v2$3 ); // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb // make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation // axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned) let axes = [ 0, - _f0.z, _f0.y, 0, - _f1.z, _f1.y, 0, - _f2.z, _f2.y, _f0.z, 0, - _f0.x, _f1.z, 0, - _f1.x, _f2.z, 0, - _f2.x, - _f0.y, _f0.x, 0, - _f1.y, _f1.x, 0, - _f2.y, _f2.x, 0 ]; if ( ! satForAxes( axes, _v0$2, _v1$7, _v2$3, _extents ) ) { return false; } // test 3 face normals from the aabb axes = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ]; if ( ! satForAxes( axes, _v0$2, _v1$7, _v2$3, _extents ) ) { return false; } // finally testing the face normal of the triangle // use already existing triangle edge vectors here _triangleNormal.crossVectors( _f0, _f1 ); axes = [ _triangleNormal.x, _triangleNormal.y, _triangleNormal.z ]; return satForAxes( axes, _v0$2, _v1$7, _v2$3, _extents ); } clampPoint( point, target ) { return target.copy( point ).clamp( this.min, this.max ); } distanceToPoint( point ) { const clampedPoint = _vector$b.copy( point ).clamp( this.min, this.max ); return clampedPoint.sub( point ).length(); } getBoundingSphere( target ) { this.getCenter( target.center ); target.radius = this.getSize( _vector$b ).length() * 0.5; return target; } intersect( box ) { this.min.max( box.min ); this.max.min( box.max ); // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values. if ( this.isEmpty() ) this.makeEmpty(); return this; } union( box ) { this.min.min( box.min ); this.max.max( box.max ); return this; } applyMatrix4( matrix ) { // transform of empty box is an empty box. if ( this.isEmpty() ) return this; // NOTE: I am using a binary pattern to specify all 2^3 combinations below _points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000 _points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001 _points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010 _points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011 _points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100 _points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101 _points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110 _points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111 this.setFromPoints( _points ); return this; } translate( offset ) { this.min.add( offset ); this.max.add( offset ); return this; } equals( box ) { return box.min.equals( this.min ) && box.max.equals( this.max ); } } Box3.prototype.isBox3 = true; const _points = [ /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3() ]; const _vector$b = /*@__PURE__*/ new Vector3(); const _box$3 = /*@__PURE__*/ new Box3(); // triangle centered vertices const _v0$2 = /*@__PURE__*/ new Vector3(); const _v1$7 = /*@__PURE__*/ new Vector3(); const _v2$3 = /*@__PURE__*/ new Vector3(); // triangle edge vectors const _f0 = /*@__PURE__*/ new Vector3(); const _f1 = /*@__PURE__*/ new Vector3(); const _f2 = /*@__PURE__*/ new Vector3(); const _center = /*@__PURE__*/ new Vector3(); const _extents = /*@__PURE__*/ new Vector3(); const _triangleNormal = /*@__PURE__*/ new Vector3(); const _testAxis = /*@__PURE__*/ new Vector3(); function satForAxes( axes, v0, v1, v2, extents ) { for ( let i = 0, j = axes.length - 3; i <= j; i += 3 ) { _testAxis.fromArray( axes, i ); // project the aabb onto the seperating axis const r = extents.x * Math.abs( _testAxis.x ) + extents.y * Math.abs( _testAxis.y ) + extents.z * Math.abs( _testAxis.z ); // project all 3 vertices of the triangle onto the seperating axis const p0 = v0.dot( _testAxis ); const p1 = v1.dot( _testAxis ); const p2 = v2.dot( _testAxis ); // actual test, basically see if either of the most extreme of the triangle points intersects r if ( Math.max( - Math.max( p0, p1, p2 ), Math.min( p0, p1, p2 ) ) > r ) { // points of the projected triangle are outside the projected half-length of the aabb // the axis is seperating and we can exit return false; } } return true; } const _box$2 = /*@__PURE__*/ new Box3(); const _v1$6 = /*@__PURE__*/ new Vector3(); const _toFarthestPoint = /*@__PURE__*/ new Vector3(); const _toPoint = /*@__PURE__*/ new Vector3(); class Sphere { constructor( center = new Vector3(), radius = - 1 ) { this.center = center; this.radius = radius; } set( center, radius ) { this.center.copy( center ); this.radius = radius; return this; } setFromPoints( points, optionalCenter ) { const center = this.center; if ( optionalCenter !== undefined ) { center.copy( optionalCenter ); } else { _box$2.setFromPoints( points ).getCenter( center ); } let maxRadiusSq = 0; for ( let i = 0, il = points.length; i < il; i ++ ) { maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) ); } this.radius = Math.sqrt( maxRadiusSq ); return this; } copy( sphere ) { this.center.copy( sphere.center ); this.radius = sphere.radius; return this; } isEmpty() { return ( this.radius < 0 ); } makeEmpty() { this.center.set( 0, 0, 0 ); this.radius = - 1; return this; } containsPoint( point ) { return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) ); } distanceToPoint( point ) { return ( point.distanceTo( this.center ) - this.radius ); } intersectsSphere( sphere ) { const radiusSum = this.radius + sphere.radius; return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum ); } intersectsBox( box ) { return box.intersectsSphere( this ); } intersectsPlane( plane ) { return Math.abs( plane.distanceToPoint( this.center ) ) <= this.radius; } clampPoint( point, target ) { const deltaLengthSq = this.center.distanceToSquared( point ); target.copy( point ); if ( deltaLengthSq > ( this.radius * this.radius ) ) { target.sub( this.center ).normalize(); target.multiplyScalar( this.radius ).add( this.center ); } return target; } getBoundingBox( target ) { if ( this.isEmpty() ) { // Empty sphere produces empty bounding box target.makeEmpty(); return target; } target.set( this.center, this.center ); target.expandByScalar( this.radius ); return target; } applyMatrix4( matrix ) { this.center.applyMatrix4( matrix ); this.radius = this.radius * matrix.getMaxScaleOnAxis(); return this; } translate( offset ) { this.center.add( offset ); return this; } expandByPoint( point ) { // from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L649-L671 _toPoint.subVectors( point, this.center ); const lengthSq = _toPoint.lengthSq(); if ( lengthSq > ( this.radius * this.radius ) ) { const length = Math.sqrt( lengthSq ); const missingRadiusHalf = ( length - this.radius ) * 0.5; // Nudge this sphere towards the target point. Add half the missing distance to radius, // and the other half to position. This gives a tighter enclosure, instead of if // the whole missing distance were just added to radius. this.center.add( _toPoint.multiplyScalar( missingRadiusHalf / length ) ); this.radius += missingRadiusHalf; } return this; } union( sphere ) { // from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L759-L769 // To enclose another sphere into this sphere, we only need to enclose two points: // 1) Enclose the farthest point on the other sphere into this sphere. // 2) Enclose the opposite point of the farthest point into this sphere. _toFarthestPoint.subVectors( sphere.center, this.center ).normalize().multiplyScalar( sphere.radius ); this.expandByPoint( _v1$6.copy( sphere.center ).add( _toFarthestPoint ) ); this.expandByPoint( _v1$6.copy( sphere.center ).sub( _toFarthestPoint ) ); return this; } equals( sphere ) { return sphere.center.equals( this.center ) && ( sphere.radius === this.radius ); } clone() { return new this.constructor().copy( this ); } } const _vector$a = /*@__PURE__*/ new Vector3(); const _segCenter = /*@__PURE__*/ new Vector3(); const _segDir = /*@__PURE__*/ new Vector3(); const _diff = /*@__PURE__*/ new Vector3(); const _edge1 = /*@__PURE__*/ new Vector3(); const _edge2 = /*@__PURE__*/ new Vector3(); const _normal$1 = /*@__PURE__*/ new Vector3(); class Ray { constructor( origin = new Vector3(), direction = new Vector3( 0, 0, - 1 ) ) { this.origin = origin; this.direction = direction; } set( origin, direction ) { this.origin.copy( origin ); this.direction.copy( direction ); return this; } copy( ray ) { this.origin.copy( ray.origin ); this.direction.copy( ray.direction ); return this; } at( t, target ) { return target.copy( this.direction ).multiplyScalar( t ).add( this.origin ); } lookAt( v ) { this.direction.copy( v ).sub( this.origin ).normalize(); return this; } recast( t ) { this.origin.copy( this.at( t, _vector$a ) ); return this; } closestPointToPoint( point, target ) { target.subVectors( point, this.origin ); const directionDistance = target.dot( this.direction ); if ( directionDistance < 0 ) { return target.copy( this.origin ); } return target.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin ); } distanceToPoint( point ) { return Math.sqrt( this.distanceSqToPoint( point ) ); } distanceSqToPoint( point ) { const directionDistance = _vector$a.subVectors( point, this.origin ).dot( this.direction ); // point behind the ray if ( directionDistance < 0 ) { return this.origin.distanceToSquared( point ); } _vector$a.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin ); return _vector$a.distanceToSquared( point ); } distanceSqToSegment( v0, v1, optionalPointOnRay, optionalPointOnSegment ) { // from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h // It returns the min distance between the ray and the segment // defined by v0 and v1 // It can also set two optional targets : // - The closest point on the ray // - The closest point on the segment _segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 ); _segDir.copy( v1 ).sub( v0 ).normalize(); _diff.copy( this.origin ).sub( _segCenter ); const segExtent = v0.distanceTo( v1 ) * 0.5; const a01 = - this.direction.dot( _segDir ); const b0 = _diff.dot( this.direction ); const b1 = - _diff.dot( _segDir ); const c = _diff.lengthSq(); const det = Math.abs( 1 - a01 * a01 ); let s0, s1, sqrDist, extDet; if ( det > 0 ) { // The ray and segment are not parallel. s0 = a01 * b1 - b0; s1 = a01 * b0 - b1; extDet = segExtent * det; if ( s0 >= 0 ) { if ( s1 >= - extDet ) { if ( s1 <= extDet ) { // region 0 // Minimum at interior points of ray and segment. const invDet = 1 / det; s0 *= invDet; s1 *= invDet; sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c; } else { // region 1 s1 = segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } else { // region 5 s1 = - segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } else { if ( s1 <= - extDet ) { // region 4 s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) ); s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } else if ( s1 <= extDet ) { // region 3 s0 = 0; s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = s1 * ( s1 + 2 * b1 ) + c; } else { // region 2 s0 = Math.max( 0, - ( a01 * segExtent + b0 ) ); s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } } else { // Ray and segment are parallel. s1 = ( a01 > 0 ) ? - segExtent : segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } if ( optionalPointOnRay ) { optionalPointOnRay.copy( this.direction ).multiplyScalar( s0 ).add( this.origin ); } if ( optionalPointOnSegment ) { optionalPointOnSegment.copy( _segDir ).multiplyScalar( s1 ).add( _segCenter ); } return sqrDist; } intersectSphere( sphere, target ) { _vector$a.subVectors( sphere.center, this.origin ); const tca = _vector$a.dot( this.direction ); const d2 = _vector$a.dot( _vector$a ) - tca * tca; const radius2 = sphere.radius * sphere.radius; if ( d2 > radius2 ) return null; const thc = Math.sqrt( radius2 - d2 ); // t0 = first intersect point - entrance on front of sphere const t0 = tca - thc; // t1 = second intersect point - exit point on back of sphere const t1 = tca + thc; // test to see if both t0 and t1 are behind the ray - if so, return null if ( t0 < 0 && t1 < 0 ) return null; // test to see if t0 is behind the ray: // if it is, the ray is inside the sphere, so return the second exit point scaled by t1, // in order to always return an intersect point that is in front of the ray. if ( t0 < 0 ) return this.at( t1, target ); // else t0 is in front of the ray, so return the first collision point scaled by t0 return this.at( t0, target ); } intersectsSphere( sphere ) { return this.distanceSqToPoint( sphere.center ) <= ( sphere.radius * sphere.radius ); } distanceToPlane( plane ) { const denominator = plane.normal.dot( this.direction ); if ( denominator === 0 ) { // line is coplanar, return origin if ( plane.distanceToPoint( this.origin ) === 0 ) { return 0; } // Null is preferable to undefined since undefined means.... it is undefined return null; } const t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator; // Return if the ray never intersects the plane return t >= 0 ? t : null; } intersectPlane( plane, target ) { const t = this.distanceToPlane( plane ); if ( t === null ) { return null; } return this.at( t, target ); } intersectsPlane( plane ) { // check if the ray lies on the plane first const distToPoint = plane.distanceToPoint( this.origin ); if ( distToPoint === 0 ) { return true; } const denominator = plane.normal.dot( this.direction ); if ( denominator * distToPoint < 0 ) { return true; } // ray origin is behind the plane (and is pointing behind it) return false; } intersectBox( box, target ) { let tmin, tmax, tymin, tymax, tzmin, tzmax; const invdirx = 1 / this.direction.x, invdiry = 1 / this.direction.y, invdirz = 1 / this.direction.z; const origin = this.origin; if ( invdirx >= 0 ) { tmin = ( box.min.x - origin.x ) * invdirx; tmax = ( box.max.x - origin.x ) * invdirx; } else { tmin = ( box.max.x - origin.x ) * invdirx; tmax = ( box.min.x - origin.x ) * invdirx; } if ( invdiry >= 0 ) { tymin = ( box.min.y - origin.y ) * invdiry; tymax = ( box.max.y - origin.y ) * invdiry; } else { tymin = ( box.max.y - origin.y ) * invdiry; tymax = ( box.min.y - origin.y ) * invdiry; } if ( ( tmin > tymax ) || ( tymin > tmax ) ) return null; // These lines also handle the case where tmin or tmax is NaN // (result of 0 * Infinity). x !== x returns true if x is NaN if ( tymin > tmin || tmin !== tmin ) tmin = tymin; if ( tymax < tmax || tmax !== tmax ) tmax = tymax; if ( invdirz >= 0 ) { tzmin = ( box.min.z - origin.z ) * invdirz; tzmax = ( box.max.z - origin.z ) * invdirz; } else { tzmin = ( box.max.z - origin.z ) * invdirz; tzmax = ( box.min.z - origin.z ) * invdirz; } if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) return null; if ( tzmin > tmin || tmin !== tmin ) tmin = tzmin; if ( tzmax < tmax || tmax !== tmax ) tmax = tzmax; //return point closest to the ray (positive side) if ( tmax < 0 ) return null; return this.at( tmin >= 0 ? tmin : tmax, target ); } intersectsBox( box ) { return this.intersectBox( box, _vector$a ) !== null; } intersectTriangle( a, b, c, backfaceCulling, target ) { // Compute the offset origin, edges, and normal. // from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h _edge1.subVectors( b, a ); _edge2.subVectors( c, a ); _normal$1.crossVectors( _edge1, _edge2 ); // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction, // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2)) // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q)) // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N) let DdN = this.direction.dot( _normal$1 ); let sign; if ( DdN > 0 ) { if ( backfaceCulling ) return null; sign = 1; } else if ( DdN < 0 ) { sign = - 1; DdN = - DdN; } else { return null; } _diff.subVectors( this.origin, a ); const DdQxE2 = sign * this.direction.dot( _edge2.crossVectors( _diff, _edge2 ) ); // b1 < 0, no intersection if ( DdQxE2 < 0 ) { return null; } const DdE1xQ = sign * this.direction.dot( _edge1.cross( _diff ) ); // b2 < 0, no intersection if ( DdE1xQ < 0 ) { return null; } // b1+b2 > 1, no intersection if ( DdQxE2 + DdE1xQ > DdN ) { return null; } // Line intersects triangle, check if ray does. const QdN = - sign * _diff.dot( _normal$1 ); // t < 0, no intersection if ( QdN < 0 ) { return null; } // Ray intersects triangle. return this.at( QdN / DdN, target ); } applyMatrix4( matrix4 ) { this.origin.applyMatrix4( matrix4 ); this.direction.transformDirection( matrix4 ); return this; } equals( ray ) { return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction ); } clone() { return new this.constructor().copy( this ); } } class Matrix4 { constructor() { this.elements = [ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ]; if ( arguments.length > 0 ) { console.error( 'THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.' ); } } set( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { const te = this.elements; te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14; te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24; te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34; te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44; return this; } identity() { this.set( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; } clone() { return new Matrix4().fromArray( this.elements ); } copy( m ) { const te = this.elements; const me = m.elements; te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ]; te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ]; return this; } copyPosition( m ) { const te = this.elements, me = m.elements; te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; return this; } setFromMatrix3( m ) { const me = m.elements; this.set( me[ 0 ], me[ 3 ], me[ 6 ], 0, me[ 1 ], me[ 4 ], me[ 7 ], 0, me[ 2 ], me[ 5 ], me[ 8 ], 0, 0, 0, 0, 1 ); return this; } extractBasis( xAxis, yAxis, zAxis ) { xAxis.setFromMatrixColumn( this, 0 ); yAxis.setFromMatrixColumn( this, 1 ); zAxis.setFromMatrixColumn( this, 2 ); return this; } makeBasis( xAxis, yAxis, zAxis ) { this.set( xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1 ); return this; } extractRotation( m ) { // this method does not support reflection matrices const te = this.elements; const me = m.elements; const scaleX = 1 / _v1$5.setFromMatrixColumn( m, 0 ).length(); const scaleY = 1 / _v1$5.setFromMatrixColumn( m, 1 ).length(); const scaleZ = 1 / _v1$5.setFromMatrixColumn( m, 2 ).length(); te[ 0 ] = me[ 0 ] * scaleX; te[ 1 ] = me[ 1 ] * scaleX; te[ 2 ] = me[ 2 ] * scaleX; te[ 3 ] = 0; te[ 4 ] = me[ 4 ] * scaleY; te[ 5 ] = me[ 5 ] * scaleY; te[ 6 ] = me[ 6 ] * scaleY; te[ 7 ] = 0; te[ 8 ] = me[ 8 ] * scaleZ; te[ 9 ] = me[ 9 ] * scaleZ; te[ 10 ] = me[ 10 ] * scaleZ; te[ 11 ] = 0; te[ 12 ] = 0; te[ 13 ] = 0; te[ 14 ] = 0; te[ 15 ] = 1; return this; } makeRotationFromEuler( euler ) { if ( ! ( euler && euler.isEuler ) ) { console.error( 'THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' ); } const te = this.elements; const x = euler.x, y = euler.y, z = euler.z; const a = Math.cos( x ), b = Math.sin( x ); const c = Math.cos( y ), d = Math.sin( y ); const e = Math.cos( z ), f = Math.sin( z ); if ( euler.order === 'XYZ' ) { const ae = a * e, af = a * f, be = b * e, bf = b * f; te[ 0 ] = c * e; te[ 4 ] = - c * f; te[ 8 ] = d; te[ 1 ] = af + be * d; te[ 5 ] = ae - bf * d; te[ 9 ] = - b * c; te[ 2 ] = bf - ae * d; te[ 6 ] = be + af * d; te[ 10 ] = a * c; } else if ( euler.order === 'YXZ' ) { const ce = c * e, cf = c * f, de = d * e, df = d * f; te[ 0 ] = ce + df * b; te[ 4 ] = de * b - cf; te[ 8 ] = a * d; te[ 1 ] = a * f; te[ 5 ] = a * e; te[ 9 ] = - b; te[ 2 ] = cf * b - de; te[ 6 ] = df + ce * b; te[ 10 ] = a * c; } else if ( euler.order === 'ZXY' ) { const ce = c * e, cf = c * f, de = d * e, df = d * f; te[ 0 ] = ce - df * b; te[ 4 ] = - a * f; te[ 8 ] = de + cf * b; te[ 1 ] = cf + de * b; te[ 5 ] = a * e; te[ 9 ] = df - ce * b; te[ 2 ] = - a * d; te[ 6 ] = b; te[ 10 ] = a * c; } else if ( euler.order === 'ZYX' ) { const ae = a * e, af = a * f, be = b * e, bf = b * f; te[ 0 ] = c * e; te[ 4 ] = be * d - af; te[ 8 ] = ae * d + bf; te[ 1 ] = c * f; te[ 5 ] = bf * d + ae; te[ 9 ] = af * d - be; te[ 2 ] = - d; te[ 6 ] = b * c; te[ 10 ] = a * c; } else if ( euler.order === 'YZX' ) { const ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[ 0 ] = c * e; te[ 4 ] = bd - ac * f; te[ 8 ] = bc * f + ad; te[ 1 ] = f; te[ 5 ] = a * e; te[ 9 ] = - b * e; te[ 2 ] = - d * e; te[ 6 ] = ad * f + bc; te[ 10 ] = ac - bd * f; } else if ( euler.order === 'XZY' ) { const ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[ 0 ] = c * e; te[ 4 ] = - f; te[ 8 ] = d * e; te[ 1 ] = ac * f + bd; te[ 5 ] = a * e; te[ 9 ] = ad * f - bc; te[ 2 ] = bc * f - ad; te[ 6 ] = b * e; te[ 10 ] = bd * f + ac; } // bottom row te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; // last column te[ 12 ] = 0; te[ 13 ] = 0; te[ 14 ] = 0; te[ 15 ] = 1; return this; } makeRotationFromQuaternion( q ) { return this.compose( _zero, q, _one ); } lookAt( eye, target, up ) { const te = this.elements; _z.subVectors( eye, target ); if ( _z.lengthSq() === 0 ) { // eye and target are in the same position _z.z = 1; } _z.normalize(); _x.crossVectors( up, _z ); if ( _x.lengthSq() === 0 ) { // up and z are parallel if ( Math.abs( up.z ) === 1 ) { _z.x += 0.0001; } else { _z.z += 0.0001; } _z.normalize(); _x.crossVectors( up, _z ); } _x.normalize(); _y.crossVectors( _z, _x ); te[ 0 ] = _x.x; te[ 4 ] = _y.x; te[ 8 ] = _z.x; te[ 1 ] = _x.y; te[ 5 ] = _y.y; te[ 9 ] = _z.y; te[ 2 ] = _x.z; te[ 6 ] = _y.z; te[ 10 ] = _z.z; return this; } multiply( m, n ) { if ( n !== undefined ) { console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' ); return this.multiplyMatrices( m, n ); } return this.multiplyMatrices( this, m ); } premultiply( m ) { return this.multiplyMatrices( m, this ); } multiplyMatrices( a, b ) { const ae = a.elements; const be = b.elements; const te = this.elements; const a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ]; const a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ]; const a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ]; const a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ]; const b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ]; const b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ]; const b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ]; const b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ]; te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41; te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42; te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43; te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44; te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41; te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42; te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43; te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44; te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41; te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42; te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43; te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44; te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41; te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42; te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43; te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44; return this; } multiplyScalar( s ) { const te = this.elements; te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s; te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s; te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s; te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s; return this; } determinant() { const te = this.elements; const n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ]; const n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ]; const n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ]; const n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ]; //TODO: make this more efficient //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm ) return ( n41 * ( + n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34 ) + n42 * ( + n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31 ) + n43 * ( + n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31 ) + n44 * ( - n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31 ) ); } transpose() { const te = this.elements; let tmp; tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp; tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp; tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp; tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp; tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp; tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp; return this; } setPosition( x, y, z ) { const te = this.elements; if ( x.isVector3 ) { te[ 12 ] = x.x; te[ 13 ] = x.y; te[ 14 ] = x.z; } else { te[ 12 ] = x; te[ 13 ] = y; te[ 14 ] = z; } return this; } invert() { // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm const te = this.elements, n11 = te[ 0 ], n21 = te[ 1 ], n31 = te[ 2 ], n41 = te[ 3 ], n12 = te[ 4 ], n22 = te[ 5 ], n32 = te[ 6 ], n42 = te[ 7 ], n13 = te[ 8 ], n23 = te[ 9 ], n33 = te[ 10 ], n43 = te[ 11 ], n14 = te[ 12 ], n24 = te[ 13 ], n34 = te[ 14 ], n44 = te[ 15 ], t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44, t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44, t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44, t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34; const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14; if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ); const detInv = 1 / det; te[ 0 ] = t11 * detInv; te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv; te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv; te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv; te[ 4 ] = t12 * detInv; te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv; te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv; te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv; te[ 8 ] = t13 * detInv; te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv; te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv; te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv; te[ 12 ] = t14 * detInv; te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv; te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv; te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv; return this; } scale( v ) { const te = this.elements; const x = v.x, y = v.y, z = v.z; te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z; te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z; te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z; te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z; return this; } getMaxScaleOnAxis() { const te = this.elements; const scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ]; const scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ]; const scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ]; return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) ); } makeTranslation( x, y, z ) { this.set( 1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1 ); return this; } makeRotationX( theta ) { const c = Math.cos( theta ), s = Math.sin( theta ); this.set( 1, 0, 0, 0, 0, c, - s, 0, 0, s, c, 0, 0, 0, 0, 1 ); return this; } makeRotationY( theta ) { const c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, 0, s, 0, 0, 1, 0, 0, - s, 0, c, 0, 0, 0, 0, 1 ); return this; } makeRotationZ( theta ) { const c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, - s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; } makeRotationAxis( axis, angle ) { // Based on http://www.gamedev.net/reference/articles/article1199.asp const c = Math.cos( angle ); const s = Math.sin( angle ); const t = 1 - c; const x = axis.x, y = axis.y, z = axis.z; const tx = t * x, ty = t * y; this.set( tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1 ); return this; } makeScale( x, y, z ) { this.set( x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 ); return this; } makeShear( xy, xz, yx, yz, zx, zy ) { this.set( 1, yx, zx, 0, xy, 1, zy, 0, xz, yz, 1, 0, 0, 0, 0, 1 ); return this; } compose( position, quaternion, scale ) { const te = this.elements; const x = quaternion._x, y = quaternion._y, z = quaternion._z, w = quaternion._w; const x2 = x + x, y2 = y + y, z2 = z + z; const xx = x * x2, xy = x * y2, xz = x * z2; const yy = y * y2, yz = y * z2, zz = z * z2; const wx = w * x2, wy = w * y2, wz = w * z2; const sx = scale.x, sy = scale.y, sz = scale.z; te[ 0 ] = ( 1 - ( yy + zz ) ) * sx; te[ 1 ] = ( xy + wz ) * sx; te[ 2 ] = ( xz - wy ) * sx; te[ 3 ] = 0; te[ 4 ] = ( xy - wz ) * sy; te[ 5 ] = ( 1 - ( xx + zz ) ) * sy; te[ 6 ] = ( yz + wx ) * sy; te[ 7 ] = 0; te[ 8 ] = ( xz + wy ) * sz; te[ 9 ] = ( yz - wx ) * sz; te[ 10 ] = ( 1 - ( xx + yy ) ) * sz; te[ 11 ] = 0; te[ 12 ] = position.x; te[ 13 ] = position.y; te[ 14 ] = position.z; te[ 15 ] = 1; return this; } decompose( position, quaternion, scale ) { const te = this.elements; let sx = _v1$5.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length(); const sy = _v1$5.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length(); const sz = _v1$5.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length(); // if determine is negative, we need to invert one scale const det = this.determinant(); if ( det < 0 ) sx = - sx; position.x = te[ 12 ]; position.y = te[ 13 ]; position.z = te[ 14 ]; // scale the rotation part _m1$2.copy( this ); const invSX = 1 / sx; const invSY = 1 / sy; const invSZ = 1 / sz; _m1$2.elements[ 0 ] *= invSX; _m1$2.elements[ 1 ] *= invSX; _m1$2.elements[ 2 ] *= invSX; _m1$2.elements[ 4 ] *= invSY; _m1$2.elements[ 5 ] *= invSY; _m1$2.elements[ 6 ] *= invSY; _m1$2.elements[ 8 ] *= invSZ; _m1$2.elements[ 9 ] *= invSZ; _m1$2.elements[ 10 ] *= invSZ; quaternion.setFromRotationMatrix( _m1$2 ); scale.x = sx; scale.y = sy; scale.z = sz; return this; } makePerspective( left, right, top, bottom, near, far ) { if ( far === undefined ) { console.warn( 'THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.' ); } const te = this.elements; const x = 2 * near / ( right - left ); const y = 2 * near / ( top - bottom ); const a = ( right + left ) / ( right - left ); const b = ( top + bottom ) / ( top - bottom ); const c = - ( far + near ) / ( far - near ); const d = - 2 * far * near / ( far - near ); te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0; te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0; te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d; te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0; return this; } makeOrthographic( left, right, top, bottom, near, far ) { const te = this.elements; const w = 1.0 / ( right - left ); const h = 1.0 / ( top - bottom ); const p = 1.0 / ( far - near ); const x = ( right + left ) * w; const y = ( top + bottom ) * h; const z = ( far + near ) * p; te[ 0 ] = 2 * w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x; te[ 1 ] = 0; te[ 5 ] = 2 * h; te[ 9 ] = 0; te[ 13 ] = - y; te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = - 2 * p; te[ 14 ] = - z; te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1; return this; } equals( matrix ) { const te = this.elements; const me = matrix.elements; for ( let i = 0; i < 16; i ++ ) { if ( te[ i ] !== me[ i ] ) return false; } return true; } fromArray( array, offset = 0 ) { for ( let i = 0; i < 16; i ++ ) { this.elements[ i ] = array[ i + offset ]; } return this; } toArray( array = [], offset = 0 ) { const te = this.elements; array[ offset ] = te[ 0 ]; array[ offset + 1 ] = te[ 1 ]; array[ offset + 2 ] = te[ 2 ]; array[ offset + 3 ] = te[ 3 ]; array[ offset + 4 ] = te[ 4 ]; array[ offset + 5 ] = te[ 5 ]; array[ offset + 6 ] = te[ 6 ]; array[ offset + 7 ] = te[ 7 ]; array[ offset + 8 ] = te[ 8 ]; array[ offset + 9 ] = te[ 9 ]; array[ offset + 10 ] = te[ 10 ]; array[ offset + 11 ] = te[ 11 ]; array[ offset + 12 ] = te[ 12 ]; array[ offset + 13 ] = te[ 13 ]; array[ offset + 14 ] = te[ 14 ]; array[ offset + 15 ] = te[ 15 ]; return array; } } Matrix4.prototype.isMatrix4 = true; const _v1$5 = /*@__PURE__*/ new Vector3(); const _m1$2 = /*@__PURE__*/ new Matrix4(); const _zero = /*@__PURE__*/ new Vector3( 0, 0, 0 ); const _one = /*@__PURE__*/ new Vector3( 1, 1, 1 ); const _x = /*@__PURE__*/ new Vector3(); const _y = /*@__PURE__*/ new Vector3(); const _z = /*@__PURE__*/ new Vector3(); const _matrix$1 = /*@__PURE__*/ new Matrix4(); const _quaternion$3 = /*@__PURE__*/ new Quaternion(); class Euler { constructor( x = 0, y = 0, z = 0, order = Euler.DefaultOrder ) { this._x = x; this._y = y; this._z = z; this._order = order; } get x() { return this._x; } set x( value ) { this._x = value; this._onChangeCallback(); } get y() { return this._y; } set y( value ) { this._y = value; this._onChangeCallback(); } get z() { return this._z; } set z( value ) { this._z = value; this._onChangeCallback(); } get order() { return this._order; } set order( value ) { this._order = value; this._onChangeCallback(); } set( x, y, z, order = this._order ) { this._x = x; this._y = y; this._z = z; this._order = order; this._onChangeCallback(); return this; } clone() { return new this.constructor( this._x, this._y, this._z, this._order ); } copy( euler ) { this._x = euler._x; this._y = euler._y; this._z = euler._z; this._order = euler._order; this._onChangeCallback(); return this; } setFromRotationMatrix( m, order = this._order, update = true ) { // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) const te = m.elements; const m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ]; const m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ]; const m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; switch ( order ) { case 'XYZ': this._y = Math.asin( clamp( m13, - 1, 1 ) ); if ( Math.abs( m13 ) < 0.9999999 ) { this._x = Math.atan2( - m23, m33 ); this._z = Math.atan2( - m12, m11 ); } else { this._x = Math.atan2( m32, m22 ); this._z = 0; } break; case 'YXZ': this._x = Math.asin( - clamp( m23, - 1, 1 ) ); if ( Math.abs( m23 ) < 0.9999999 ) { this._y = Math.atan2( m13, m33 ); this._z = Math.atan2( m21, m22 ); } else { this._y = Math.atan2( - m31, m11 ); this._z = 0; } break; case 'ZXY': this._x = Math.asin( clamp( m32, - 1, 1 ) ); if ( Math.abs( m32 ) < 0.9999999 ) { this._y = Math.atan2( - m31, m33 ); this._z = Math.atan2( - m12, m22 ); } else { this._y = 0; this._z = Math.atan2( m21, m11 ); } break; case 'ZYX': this._y = Math.asin( - clamp( m31, - 1, 1 ) ); if ( Math.abs( m31 ) < 0.9999999 ) { this._x = Math.atan2( m32, m33 ); this._z = Math.atan2( m21, m11 ); } else { this._x = 0; this._z = Math.atan2( - m12, m22 ); } break; case 'YZX': this._z = Math.asin( clamp( m21, - 1, 1 ) ); if ( Math.abs( m21 ) < 0.9999999 ) { this._x = Math.atan2( - m23, m22 ); this._y = Math.atan2( - m31, m11 ); } else { this._x = 0; this._y = Math.atan2( m13, m33 ); } break; case 'XZY': this._z = Math.asin( - clamp( m12, - 1, 1 ) ); if ( Math.abs( m12 ) < 0.9999999 ) { this._x = Math.atan2( m32, m22 ); this._y = Math.atan2( m13, m11 ); } else { this._x = Math.atan2( - m23, m33 ); this._y = 0; } break; default: console.warn( 'THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order ); } this._order = order; if ( update === true ) this._onChangeCallback(); return this; } setFromQuaternion( q, order, update ) { _matrix$1.makeRotationFromQuaternion( q ); return this.setFromRotationMatrix( _matrix$1, order, update ); } setFromVector3( v, order = this._order ) { return this.set( v.x, v.y, v.z, order ); } reorder( newOrder ) { // WARNING: this discards revolution information -bhouston _quaternion$3.setFromEuler( this ); return this.setFromQuaternion( _quaternion$3, newOrder ); } equals( euler ) { return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order ); } fromArray( array ) { this._x = array[ 0 ]; this._y = array[ 1 ]; this._z = array[ 2 ]; if ( array[ 3 ] !== undefined ) this._order = array[ 3 ]; this._onChangeCallback(); return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this._x; array[ offset + 1 ] = this._y; array[ offset + 2 ] = this._z; array[ offset + 3 ] = this._order; return array; } toVector3( optionalResult ) { if ( optionalResult ) { return optionalResult.set( this._x, this._y, this._z ); } else { return new Vector3( this._x, this._y, this._z ); } } _onChange( callback ) { this._onChangeCallback = callback; return this; } _onChangeCallback() {} } Euler.prototype.isEuler = true; Euler.DefaultOrder = 'XYZ'; Euler.RotationOrders = [ 'XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX' ]; class Layers { constructor() { this.mask = 1 | 0; } set( channel ) { this.mask = 1 << channel | 0; } enable( channel ) { this.mask |= 1 << channel | 0; } enableAll() { this.mask = 0xffffffff | 0; } toggle( channel ) { this.mask ^= 1 << channel | 0; } disable( channel ) { this.mask &= ~ ( 1 << channel | 0 ); } disableAll() { this.mask = 0; } test( layers ) { return ( this.mask & layers.mask ) !== 0; } } let _object3DId = 0; const _v1$4 = /*@__PURE__*/ new Vector3(); const _q1 = /*@__PURE__*/ new Quaternion(); const _m1$1 = /*@__PURE__*/ new Matrix4(); const _target = /*@__PURE__*/ new Vector3(); const _position$3 = /*@__PURE__*/ new Vector3(); const _scale$2 = /*@__PURE__*/ new Vector3(); const _quaternion$2 = /*@__PURE__*/ new Quaternion(); const _xAxis = /*@__PURE__*/ new Vector3( 1, 0, 0 ); const _yAxis = /*@__PURE__*/ new Vector3( 0, 1, 0 ); const _zAxis = /*@__PURE__*/ new Vector3( 0, 0, 1 ); const _addedEvent = { type: 'added' }; const _removedEvent = { type: 'removed' }; class Object3D extends EventDispatcher { constructor() { super(); Object.defineProperty( this, 'id', { value: _object3DId ++ } ); this.uuid = generateUUID(); this.name = ''; this.type = 'Object3D'; this.parent = null; this.children = []; this.up = Object3D.DefaultUp.clone(); const position = new Vector3(); const rotation = new Euler(); const quaternion = new Quaternion(); const scale = new Vector3( 1, 1, 1 ); function onRotationChange() { quaternion.setFromEuler( rotation, false ); } function onQuaternionChange() { rotation.setFromQuaternion( quaternion, undefined, false ); } rotation._onChange( onRotationChange ); quaternion._onChange( onQuaternionChange ); Object.defineProperties( this, { position: { configurable: true, enumerable: true, value: position }, rotation: { configurable: true, enumerable: true, value: rotation }, quaternion: { configurable: true, enumerable: true, value: quaternion }, scale: { configurable: true, enumerable: true, value: scale }, modelViewMatrix: { value: new Matrix4() }, normalMatrix: { value: new Matrix3() } } ); this.matrix = new Matrix4(); this.matrixWorld = new Matrix4(); this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate; this.matrixWorldNeedsUpdate = false; this.layers = new Layers(); this.visible = true; this.castShadow = false; this.receiveShadow = false; this.frustumCulled = true; this.renderOrder = 0; this.animations = []; this.userData = {}; } onBeforeRender() {} onAfterRender() {} applyMatrix4( matrix ) { if ( this.matrixAutoUpdate ) this.updateMatrix(); this.matrix.premultiply( matrix ); this.matrix.decompose( this.position, this.quaternion, this.scale ); } applyQuaternion( q ) { this.quaternion.premultiply( q ); return this; } setRotationFromAxisAngle( axis, angle ) { // assumes axis is normalized this.quaternion.setFromAxisAngle( axis, angle ); } setRotationFromEuler( euler ) { this.quaternion.setFromEuler( euler, true ); } setRotationFromMatrix( m ) { // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) this.quaternion.setFromRotationMatrix( m ); } setRotationFromQuaternion( q ) { // assumes q is normalized this.quaternion.copy( q ); } rotateOnAxis( axis, angle ) { // rotate object on axis in object space // axis is assumed to be normalized _q1.setFromAxisAngle( axis, angle ); this.quaternion.multiply( _q1 ); return this; } rotateOnWorldAxis( axis, angle ) { // rotate object on axis in world space // axis is assumed to be normalized // method assumes no rotated parent _q1.setFromAxisAngle( axis, angle ); this.quaternion.premultiply( _q1 ); return this; } rotateX( angle ) { return this.rotateOnAxis( _xAxis, angle ); } rotateY( angle ) { return this.rotateOnAxis( _yAxis, angle ); } rotateZ( angle ) { return this.rotateOnAxis( _zAxis, angle ); } translateOnAxis( axis, distance ) { // translate object by distance along axis in object space // axis is assumed to be normalized _v1$4.copy( axis ).applyQuaternion( this.quaternion ); this.position.add( _v1$4.multiplyScalar( distance ) ); return this; } translateX( distance ) { return this.translateOnAxis( _xAxis, distance ); } translateY( distance ) { return this.translateOnAxis( _yAxis, distance ); } translateZ( distance ) { return this.translateOnAxis( _zAxis, distance ); } localToWorld( vector ) { return vector.applyMatrix4( this.matrixWorld ); } worldToLocal( vector ) { return vector.applyMatrix4( _m1$1.copy( this.matrixWorld ).invert() ); } lookAt( x, y, z ) { // This method does not support objects having non-uniformly-scaled parent(s) if ( x.isVector3 ) { _target.copy( x ); } else { _target.set( x, y, z ); } const parent = this.parent; this.updateWorldMatrix( true, false ); _position$3.setFromMatrixPosition( this.matrixWorld ); if ( this.isCamera || this.isLight ) { _m1$1.lookAt( _position$3, _target, this.up ); } else { _m1$1.lookAt( _target, _position$3, this.up ); } this.quaternion.setFromRotationMatrix( _m1$1 ); if ( parent ) { _m1$1.extractRotation( parent.matrixWorld ); _q1.setFromRotationMatrix( _m1$1 ); this.quaternion.premultiply( _q1.invert() ); } } add( object ) { if ( arguments.length > 1 ) { for ( let i = 0; i < arguments.length; i ++ ) { this.add( arguments[ i ] ); } return this; } if ( object === this ) { console.error( 'THREE.Object3D.add: object can\'t be added as a child of itself.', object ); return this; } if ( object && object.isObject3D ) { if ( object.parent !== null ) { object.parent.remove( object ); } object.parent = this; this.children.push( object ); object.dispatchEvent( _addedEvent ); } else { console.error( 'THREE.Object3D.add: object not an instance of THREE.Object3D.', object ); } return this; } remove( object ) { if ( arguments.length > 1 ) { for ( let i = 0; i < arguments.length; i ++ ) { this.remove( arguments[ i ] ); } return this; } const index = this.children.indexOf( object ); if ( index !== - 1 ) { object.parent = null; this.children.splice( index, 1 ); object.dispatchEvent( _removedEvent ); } return this; } removeFromParent() { const parent = this.parent; if ( parent !== null ) { parent.remove( this ); } return this; } clear() { for ( let i = 0; i < this.children.length; i ++ ) { const object = this.children[ i ]; object.parent = null; object.dispatchEvent( _removedEvent ); } this.children.length = 0; return this; } attach( object ) { // adds object as a child of this, while maintaining the object's world transform this.updateWorldMatrix( true, false ); _m1$1.copy( this.matrixWorld ).invert(); if ( object.parent !== null ) { object.parent.updateWorldMatrix( true, false ); _m1$1.multiply( object.parent.matrixWorld ); } object.applyMatrix4( _m1$1 ); this.add( object ); object.updateWorldMatrix( false, true ); return this; } getObjectById( id ) { return this.getObjectByProperty( 'id', id ); } getObjectByName( name ) { return this.getObjectByProperty( 'name', name ); } getObjectByProperty( name, value ) { if ( this[ name ] === value ) return this; for ( let i = 0, l = this.children.length; i < l; i ++ ) { const child = this.children[ i ]; const object = child.getObjectByProperty( name, value ); if ( object !== undefined ) { return object; } } return undefined; } getWorldPosition( target ) { this.updateWorldMatrix( true, false ); return target.setFromMatrixPosition( this.matrixWorld ); } getWorldQuaternion( target ) { this.updateWorldMatrix( true, false ); this.matrixWorld.decompose( _position$3, target, _scale$2 ); return target; } getWorldScale( target ) { this.updateWorldMatrix( true, false ); this.matrixWorld.decompose( _position$3, _quaternion$2, target ); return target; } getWorldDirection( target ) { this.updateWorldMatrix( true, false ); const e = this.matrixWorld.elements; return target.set( e[ 8 ], e[ 9 ], e[ 10 ] ).normalize(); } raycast() {} traverse( callback ) { callback( this ); const children = this.children; for ( let i = 0, l = children.length; i < l; i ++ ) { children[ i ].traverse( callback ); } } traverseVisible( callback ) { if ( this.visible === false ) return; callback( this ); const children = this.children; for ( let i = 0, l = children.length; i < l; i ++ ) { children[ i ].traverseVisible( callback ); } } traverseAncestors( callback ) { const parent = this.parent; if ( parent !== null ) { callback( parent ); parent.traverseAncestors( callback ); } } updateMatrix() { this.matrix.compose( this.position, this.quaternion, this.scale ); this.matrixWorldNeedsUpdate = true; } updateMatrixWorld( force ) { if ( this.matrixAutoUpdate ) this.updateMatrix(); if ( this.matrixWorldNeedsUpdate || force ) { if ( this.parent === null ) { this.matrixWorld.copy( this.matrix ); } else { this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix ); } this.matrixWorldNeedsUpdate = false; force = true; } // update children const children = this.children; for ( let i = 0, l = children.length; i < l; i ++ ) { children[ i ].updateMatrixWorld( force ); } } updateWorldMatrix( updateParents, updateChildren ) { const parent = this.parent; if ( updateParents === true && parent !== null ) { parent.updateWorldMatrix( true, false ); } if ( this.matrixAutoUpdate ) this.updateMatrix(); if ( this.parent === null ) { this.matrixWorld.copy( this.matrix ); } else { this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix ); } // update children if ( updateChildren === true ) { const children = this.children; for ( let i = 0, l = children.length; i < l; i ++ ) { children[ i ].updateWorldMatrix( false, true ); } } } toJSON( meta ) { // meta is a string when called from JSON.stringify const isRootObject = ( meta === undefined || typeof meta === 'string' ); const output = {}; // meta is a hash used to collect geometries, materials. // not providing it implies that this is the root object // being serialized. if ( isRootObject ) { // initialize meta obj meta = { geometries: {}, materials: {}, textures: {}, images: {}, shapes: {}, skeletons: {}, animations: {} }; output.metadata = { version: 4.5, type: 'Object', generator: 'Object3D.toJSON' }; } // standard Object3D serialization const object = {}; object.uuid = this.uuid; object.type = this.type; if ( this.name !== '' ) object.name = this.name; if ( this.castShadow === true ) object.castShadow = true; if ( this.receiveShadow === true ) object.receiveShadow = true; if ( this.visible === false ) object.visible = false; if ( this.frustumCulled === false ) object.frustumCulled = false; if ( this.renderOrder !== 0 ) object.renderOrder = this.renderOrder; if ( JSON.stringify( this.userData ) !== '{}' ) object.userData = this.userData; object.layers = this.layers.mask; object.matrix = this.matrix.toArray(); if ( this.matrixAutoUpdate === false ) object.matrixAutoUpdate = false; // object specific properties if ( this.isInstancedMesh ) { object.type = 'InstancedMesh'; object.count = this.count; object.instanceMatrix = this.instanceMatrix.toJSON(); if ( this.instanceColor !== null ) object.instanceColor = this.instanceColor.toJSON(); } // function serialize( library, element ) { if ( library[ element.uuid ] === undefined ) { library[ element.uuid ] = element.toJSON( meta ); } return element.uuid; } if ( this.isScene ) { if ( this.background ) { if ( this.background.isColor ) { object.background = this.background.toJSON(); } else if ( this.background.isTexture ) { object.background = this.background.toJSON( meta ).uuid; } } if ( this.environment && this.environment.isTexture ) { object.environment = this.environment.toJSON( meta ).uuid; } } else if ( this.isMesh || this.isLine || this.isPoints ) { object.geometry = serialize( meta.geometries, this.geometry ); const parameters = this.geometry.parameters; if ( parameters !== undefined && parameters.shapes !== undefined ) { const shapes = parameters.shapes; if ( Array.isArray( shapes ) ) { for ( let i = 0, l = shapes.length; i < l; i ++ ) { const shape = shapes[ i ]; serialize( meta.shapes, shape ); } } else { serialize( meta.shapes, shapes ); } } } if ( this.isSkinnedMesh ) { object.bindMode = this.bindMode; object.bindMatrix = this.bindMatrix.toArray(); if ( this.skeleton !== undefined ) { serialize( meta.skeletons, this.skeleton ); object.skeleton = this.skeleton.uuid; } } if ( this.material !== undefined ) { if ( Array.isArray( this.material ) ) { const uuids = []; for ( let i = 0, l = this.material.length; i < l; i ++ ) { uuids.push( serialize( meta.materials, this.material[ i ] ) ); } object.material = uuids; } else { object.material = serialize( meta.materials, this.material ); } } // if ( this.children.length > 0 ) { object.children = []; for ( let i = 0; i < this.children.length; i ++ ) { object.children.push( this.children[ i ].toJSON( meta ).object ); } } // if ( this.animations.length > 0 ) { object.animations = []; for ( let i = 0; i < this.animations.length; i ++ ) { const animation = this.animations[ i ]; object.animations.push( serialize( meta.animations, animation ) ); } } if ( isRootObject ) { const geometries = extractFromCache( meta.geometries ); const materials = extractFromCache( meta.materials ); const textures = extractFromCache( meta.textures ); const images = extractFromCache( meta.images ); const shapes = extractFromCache( meta.shapes ); const skeletons = extractFromCache( meta.skeletons ); const animations = extractFromCache( meta.animations ); if ( geometries.length > 0 ) output.geometries = geometries; if ( materials.length > 0 ) output.materials = materials; if ( textures.length > 0 ) output.textures = textures; if ( images.length > 0 ) output.images = images; if ( shapes.length > 0 ) output.shapes = shapes; if ( skeletons.length > 0 ) output.skeletons = skeletons; if ( animations.length > 0 ) output.animations = animations; } output.object = object; return output; // extract data from the cache hash // remove metadata on each item // and return as array function extractFromCache( cache ) { const values = []; for ( const key in cache ) { const data = cache[ key ]; delete data.metadata; values.push( data ); } return values; } } clone( recursive ) { return new this.constructor().copy( this, recursive ); } copy( source, recursive = true ) { this.name = source.name; this.up.copy( source.up ); this.position.copy( source.position ); this.rotation.order = source.rotation.order; this.quaternion.copy( source.quaternion ); this.scale.copy( source.scale ); this.matrix.copy( source.matrix ); this.matrixWorld.copy( source.matrixWorld ); this.matrixAutoUpdate = source.matrixAutoUpdate; this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate; this.layers.mask = source.layers.mask; this.visible = source.visible; this.castShadow = source.castShadow; this.receiveShadow = source.receiveShadow; this.frustumCulled = source.frustumCulled; this.renderOrder = source.renderOrder; this.userData = JSON.parse( JSON.stringify( source.userData ) ); if ( recursive === true ) { for ( let i = 0; i < source.children.length; i ++ ) { const child = source.children[ i ]; this.add( child.clone() ); } } return this; } } Object3D.DefaultUp = new Vector3( 0, 1, 0 ); Object3D.DefaultMatrixAutoUpdate = true; Object3D.prototype.isObject3D = true; const _v0$1 = /*@__PURE__*/ new Vector3(); const _v1$3 = /*@__PURE__*/ new Vector3(); const _v2$2 = /*@__PURE__*/ new Vector3(); const _v3$1 = /*@__PURE__*/ new Vector3(); const _vab = /*@__PURE__*/ new Vector3(); const _vac = /*@__PURE__*/ new Vector3(); const _vbc = /*@__PURE__*/ new Vector3(); const _vap = /*@__PURE__*/ new Vector3(); const _vbp = /*@__PURE__*/ new Vector3(); const _vcp = /*@__PURE__*/ new Vector3(); class Triangle { constructor( a = new Vector3(), b = new Vector3(), c = new Vector3() ) { this.a = a; this.b = b; this.c = c; } static getNormal( a, b, c, target ) { target.subVectors( c, b ); _v0$1.subVectors( a, b ); target.cross( _v0$1 ); const targetLengthSq = target.lengthSq(); if ( targetLengthSq > 0 ) { return target.multiplyScalar( 1 / Math.sqrt( targetLengthSq ) ); } return target.set( 0, 0, 0 ); } // static/instance method to calculate barycentric coordinates // based on: http://www.blackpawn.com/texts/pointinpoly/default.html static getBarycoord( point, a, b, c, target ) { _v0$1.subVectors( c, a ); _v1$3.subVectors( b, a ); _v2$2.subVectors( point, a ); const dot00 = _v0$1.dot( _v0$1 ); const dot01 = _v0$1.dot( _v1$3 ); const dot02 = _v0$1.dot( _v2$2 ); const dot11 = _v1$3.dot( _v1$3 ); const dot12 = _v1$3.dot( _v2$2 ); const denom = ( dot00 * dot11 - dot01 * dot01 ); // collinear or singular triangle if ( denom === 0 ) { // arbitrary location outside of triangle? // not sure if this is the best idea, maybe should be returning undefined return target.set( - 2, - 1, - 1 ); } const invDenom = 1 / denom; const u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom; const v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom; // barycentric coordinates must always sum to 1 return target.set( 1 - u - v, v, u ); } static containsPoint( point, a, b, c ) { this.getBarycoord( point, a, b, c, _v3$1 ); return ( _v3$1.x >= 0 ) && ( _v3$1.y >= 0 ) && ( ( _v3$1.x + _v3$1.y ) <= 1 ); } static getUV( point, p1, p2, p3, uv1, uv2, uv3, target ) { this.getBarycoord( point, p1, p2, p3, _v3$1 ); target.set( 0, 0 ); target.addScaledVector( uv1, _v3$1.x ); target.addScaledVector( uv2, _v3$1.y ); target.addScaledVector( uv3, _v3$1.z ); return target; } static isFrontFacing( a, b, c, direction ) { _v0$1.subVectors( c, b ); _v1$3.subVectors( a, b ); // strictly front facing return ( _v0$1.cross( _v1$3 ).dot( direction ) < 0 ) ? true : false; } set( a, b, c ) { this.a.copy( a ); this.b.copy( b ); this.c.copy( c ); return this; } setFromPointsAndIndices( points, i0, i1, i2 ) { this.a.copy( points[ i0 ] ); this.b.copy( points[ i1 ] ); this.c.copy( points[ i2 ] ); return this; } clone() { return new this.constructor().copy( this ); } copy( triangle ) { this.a.copy( triangle.a ); this.b.copy( triangle.b ); this.c.copy( triangle.c ); return this; } getArea() { _v0$1.subVectors( this.c, this.b ); _v1$3.subVectors( this.a, this.b ); return _v0$1.cross( _v1$3 ).length() * 0.5; } getMidpoint( target ) { return target.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 ); } getNormal( target ) { return Triangle.getNormal( this.a, this.b, this.c, target ); } getPlane( target ) { return target.setFromCoplanarPoints( this.a, this.b, this.c ); } getBarycoord( point, target ) { return Triangle.getBarycoord( point, this.a, this.b, this.c, target ); } getUV( point, uv1, uv2, uv3, target ) { return Triangle.getUV( point, this.a, this.b, this.c, uv1, uv2, uv3, target ); } containsPoint( point ) { return Triangle.containsPoint( point, this.a, this.b, this.c ); } isFrontFacing( direction ) { return Triangle.isFrontFacing( this.a, this.b, this.c, direction ); } intersectsBox( box ) { return box.intersectsTriangle( this ); } closestPointToPoint( p, target ) { const a = this.a, b = this.b, c = this.c; let v, w; // algorithm thanks to Real-Time Collision Detection by Christer Ericson, // published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc., // under the accompanying license; see chapter 5.1.5 for detailed explanation. // basically, we're distinguishing which of the voronoi regions of the triangle // the point lies in with the minimum amount of redundant computation. _vab.subVectors( b, a ); _vac.subVectors( c, a ); _vap.subVectors( p, a ); const d1 = _vab.dot( _vap ); const d2 = _vac.dot( _vap ); if ( d1 <= 0 && d2 <= 0 ) { // vertex region of A; barycentric coords (1, 0, 0) return target.copy( a ); } _vbp.subVectors( p, b ); const d3 = _vab.dot( _vbp ); const d4 = _vac.dot( _vbp ); if ( d3 >= 0 && d4 <= d3 ) { // vertex region of B; barycentric coords (0, 1, 0) return target.copy( b ); } const vc = d1 * d4 - d3 * d2; if ( vc <= 0 && d1 >= 0 && d3 <= 0 ) { v = d1 / ( d1 - d3 ); // edge region of AB; barycentric coords (1-v, v, 0) return target.copy( a ).addScaledVector( _vab, v ); } _vcp.subVectors( p, c ); const d5 = _vab.dot( _vcp ); const d6 = _vac.dot( _vcp ); if ( d6 >= 0 && d5 <= d6 ) { // vertex region of C; barycentric coords (0, 0, 1) return target.copy( c ); } const vb = d5 * d2 - d1 * d6; if ( vb <= 0 && d2 >= 0 && d6 <= 0 ) { w = d2 / ( d2 - d6 ); // edge region of AC; barycentric coords (1-w, 0, w) return target.copy( a ).addScaledVector( _vac, w ); } const va = d3 * d6 - d5 * d4; if ( va <= 0 && ( d4 - d3 ) >= 0 && ( d5 - d6 ) >= 0 ) { _vbc.subVectors( c, b ); w = ( d4 - d3 ) / ( ( d4 - d3 ) + ( d5 - d6 ) ); // edge region of BC; barycentric coords (0, 1-w, w) return target.copy( b ).addScaledVector( _vbc, w ); // edge region of BC } // face region const denom = 1 / ( va + vb + vc ); // u = va * denom v = vb * denom; w = vc * denom; return target.copy( a ).addScaledVector( _vab, v ).addScaledVector( _vac, w ); } equals( triangle ) { return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c ); } } let materialId = 0; class Material extends EventDispatcher { constructor() { super(); Object.defineProperty( this, 'id', { value: materialId ++ } ); this.uuid = generateUUID(); this.name = ''; this.type = 'Material'; this.fog = true; this.blending = NormalBlending; this.side = FrontSide; this.vertexColors = false; this.opacity = 1; this.format = RGBAFormat; this.transparent = false; this.blendSrc = SrcAlphaFactor; this.blendDst = OneMinusSrcAlphaFactor; this.blendEquation = AddEquation; this.blendSrcAlpha = null; this.blendDstAlpha = null; this.blendEquationAlpha = null; this.depthFunc = LessEqualDepth; this.depthTest = true; this.depthWrite = true; this.stencilWriteMask = 0xff; this.stencilFunc = AlwaysStencilFunc; this.stencilRef = 0; this.stencilFuncMask = 0xff; this.stencilFail = KeepStencilOp; this.stencilZFail = KeepStencilOp; this.stencilZPass = KeepStencilOp; this.stencilWrite = false; this.clippingPlanes = null; this.clipIntersection = false; this.clipShadows = false; this.shadowSide = null; this.colorWrite = true; this.precision = null; // override the renderer's default precision for this material this.polygonOffset = false; this.polygonOffsetFactor = 0; this.polygonOffsetUnits = 0; this.dithering = false; this.alphaToCoverage = false; this.premultipliedAlpha = false; this.visible = true; this.toneMapped = true; this.userData = {}; this.version = 0; this._alphaTest = 0; } get alphaTest() { return this._alphaTest; } set alphaTest( value ) { if ( this._alphaTest > 0 !== value > 0 ) { this.version ++; } this._alphaTest = value; } onBuild( /* shaderobject, renderer */ ) {} onBeforeCompile( /* shaderobject, renderer */ ) {} customProgramCacheKey() { return this.onBeforeCompile.toString(); } setValues( values ) { if ( values === undefined ) return; for ( const key in values ) { const newValue = values[ key ]; if ( newValue === undefined ) { console.warn( 'THREE.Material: \'' + key + '\' parameter is undefined.' ); continue; } // for backward compatability if shading is set in the constructor if ( key === 'shading' ) { console.warn( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' ); this.flatShading = ( newValue === FlatShading ) ? true : false; continue; } const currentValue = this[ key ]; if ( currentValue === undefined ) { console.warn( 'THREE.' + this.type + ': \'' + key + '\' is not a property of this material.' ); continue; } if ( currentValue && currentValue.isColor ) { currentValue.set( newValue ); } else if ( ( currentValue && currentValue.isVector3 ) && ( newValue && newValue.isVector3 ) ) { currentValue.copy( newValue ); } else { this[ key ] = newValue; } } } toJSON( meta ) { const isRoot = ( meta === undefined || typeof meta === 'string' ); if ( isRoot ) { meta = { textures: {}, images: {} }; } const data = { metadata: { version: 4.5, type: 'Material', generator: 'Material.toJSON' } }; // standard Material serialization data.uuid = this.uuid; data.type = this.type; if ( this.name !== '' ) data.name = this.name; if ( this.color && this.color.isColor ) data.color = this.color.getHex(); if ( this.roughness !== undefined ) data.roughness = this.roughness; if ( this.metalness !== undefined ) data.metalness = this.metalness; if ( this.sheenTint && this.sheenTint.isColor ) data.sheenTint = this.sheenTint.getHex(); if ( this.emissive && this.emissive.isColor ) data.emissive = this.emissive.getHex(); if ( this.emissiveIntensity && this.emissiveIntensity !== 1 ) data.emissiveIntensity = this.emissiveIntensity; if ( this.specular && this.specular.isColor ) data.specular = this.specular.getHex(); if ( this.specularIntensity !== undefined ) data.specularIntensity = this.specularIntensity; if ( this.specularTint && this.specularTint.isColor ) data.specularTint = this.specularTint.getHex(); if ( this.shininess !== undefined ) data.shininess = this.shininess; if ( this.clearcoat !== undefined ) data.clearcoat = this.clearcoat; if ( this.clearcoatRoughness !== undefined ) data.clearcoatRoughness = this.clearcoatRoughness; if ( this.clearcoatMap && this.clearcoatMap.isTexture ) { data.clearcoatMap = this.clearcoatMap.toJSON( meta ).uuid; } if ( this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture ) { data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON( meta ).uuid; } if ( this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture ) { data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON( meta ).uuid; data.clearcoatNormalScale = this.clearcoatNormalScale.toArray(); } if ( this.map && this.map.isTexture ) data.map = this.map.toJSON( meta ).uuid; if ( this.matcap && this.matcap.isTexture ) data.matcap = this.matcap.toJSON( meta ).uuid; if ( this.alphaMap && this.alphaMap.isTexture ) data.alphaMap = this.alphaMap.toJSON( meta ).uuid; if ( this.lightMap && this.lightMap.isTexture ) { data.lightMap = this.lightMap.toJSON( meta ).uuid; data.lightMapIntensity = this.lightMapIntensity; } if ( this.aoMap && this.aoMap.isTexture ) { data.aoMap = this.aoMap.toJSON( meta ).uuid; data.aoMapIntensity = this.aoMapIntensity; } if ( this.bumpMap && this.bumpMap.isTexture ) { data.bumpMap = this.bumpMap.toJSON( meta ).uuid; data.bumpScale = this.bumpScale; } if ( this.normalMap && this.normalMap.isTexture ) { data.normalMap = this.normalMap.toJSON( meta ).uuid; data.normalMapType = this.normalMapType; data.normalScale = this.normalScale.toArray(); } if ( this.displacementMap && this.displacementMap.isTexture ) { data.displacementMap = this.displacementMap.toJSON( meta ).uuid; data.displacementScale = this.displacementScale; data.displacementBias = this.displacementBias; } if ( this.roughnessMap && this.roughnessMap.isTexture ) data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid; if ( this.metalnessMap && this.metalnessMap.isTexture ) data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid; if ( this.emissiveMap && this.emissiveMap.isTexture ) data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid; if ( this.specularMap && this.specularMap.isTexture ) data.specularMap = this.specularMap.toJSON( meta ).uuid; if ( this.specularIntensityMap && this.specularIntensityMap.isTexture ) data.specularIntensityMap = this.specularIntensityMap.toJSON( meta ).uuid; if ( this.specularTintMap && this.specularTintMap.isTexture ) data.specularTintMap = this.specularTintMap.toJSON( meta ).uuid; if ( this.envMap && this.envMap.isTexture ) { data.envMap = this.envMap.toJSON( meta ).uuid; if ( this.combine !== undefined ) data.combine = this.combine; } if ( this.envMapIntensity !== undefined ) data.envMapIntensity = this.envMapIntensity; if ( this.reflectivity !== undefined ) data.reflectivity = this.reflectivity; if ( this.refractionRatio !== undefined ) data.refractionRatio = this.refractionRatio; if ( this.gradientMap && this.gradientMap.isTexture ) { data.gradientMap = this.gradientMap.toJSON( meta ).uuid; } if ( this.transmission !== undefined ) data.transmission = this.transmission; if ( this.transmissionMap && this.transmissionMap.isTexture ) data.transmissionMap = this.transmissionMap.toJSON( meta ).uuid; if ( this.thickness !== undefined ) data.thickness = this.thickness; if ( this.thicknessMap && this.thicknessMap.isTexture ) data.thicknessMap = this.thicknessMap.toJSON( meta ).uuid; if ( this.attenuationDistance !== undefined ) data.attenuationDistance = this.attenuationDistance; if ( this.attenuationTint !== undefined ) data.attenuationTint = this.attenuationTint.getHex(); if ( this.size !== undefined ) data.size = this.size; if ( this.shadowSide !== null ) data.shadowSide = this.shadowSide; if ( this.sizeAttenuation !== undefined ) data.sizeAttenuation = this.sizeAttenuation; if ( this.blending !== NormalBlending ) data.blending = this.blending; if ( this.side !== FrontSide ) data.side = this.side; if ( this.vertexColors ) data.vertexColors = true; if ( this.opacity < 1 ) data.opacity = this.opacity; if ( this.format !== RGBAFormat ) data.format = this.format; if ( this.transparent === true ) data.transparent = this.transparent; data.depthFunc = this.depthFunc; data.depthTest = this.depthTest; data.depthWrite = this.depthWrite; data.colorWrite = this.colorWrite; data.stencilWrite = this.stencilWrite; data.stencilWriteMask = this.stencilWriteMask; data.stencilFunc = this.stencilFunc; data.stencilRef = this.stencilRef; data.stencilFuncMask = this.stencilFuncMask; data.stencilFail = this.stencilFail; data.stencilZFail = this.stencilZFail; data.stencilZPass = this.stencilZPass; // rotation (SpriteMaterial) if ( this.rotation && this.rotation !== 0 ) data.rotation = this.rotation; if ( this.polygonOffset === true ) data.polygonOffset = true; if ( this.polygonOffsetFactor !== 0 ) data.polygonOffsetFactor = this.polygonOffsetFactor; if ( this.polygonOffsetUnits !== 0 ) data.polygonOffsetUnits = this.polygonOffsetUnits; if ( this.linewidth && this.linewidth !== 1 ) data.linewidth = this.linewidth; if ( this.dashSize !== undefined ) data.dashSize = this.dashSize; if ( this.gapSize !== undefined ) data.gapSize = this.gapSize; if ( this.scale !== undefined ) data.scale = this.scale; if ( this.dithering === true ) data.dithering = true; if ( this.alphaTest > 0 ) data.alphaTest = this.alphaTest; if ( this.alphaToCoverage === true ) data.alphaToCoverage = this.alphaToCoverage; if ( this.premultipliedAlpha === true ) data.premultipliedAlpha = this.premultipliedAlpha; if ( this.wireframe === true ) data.wireframe = this.wireframe; if ( this.wireframeLinewidth > 1 ) data.wireframeLinewidth = this.wireframeLinewidth; if ( this.wireframeLinecap !== 'round' ) data.wireframeLinecap = this.wireframeLinecap; if ( this.wireframeLinejoin !== 'round' ) data.wireframeLinejoin = this.wireframeLinejoin; if ( this.flatShading === true ) data.flatShading = this.flatShading; if ( this.visible === false ) data.visible = false; if ( this.toneMapped === false ) data.toneMapped = false; if ( JSON.stringify( this.userData ) !== '{}' ) data.userData = this.userData; // TODO: Copied from Object3D.toJSON function extractFromCache( cache ) { const values = []; for ( const key in cache ) { const data = cache[ key ]; delete data.metadata; values.push( data ); } return values; } if ( isRoot ) { const textures = extractFromCache( meta.textures ); const images = extractFromCache( meta.images ); if ( textures.length > 0 ) data.textures = textures; if ( images.length > 0 ) data.images = images; } return data; } clone() { return new this.constructor().copy( this ); } copy( source ) { this.name = source.name; this.fog = source.fog; this.blending = source.blending; this.side = source.side; this.vertexColors = source.vertexColors; this.opacity = source.opacity; this.format = source.format; this.transparent = source.transparent; this.blendSrc = source.blendSrc; this.blendDst = source.blendDst; this.blendEquation = source.blendEquation; this.blendSrcAlpha = source.blendSrcAlpha; this.blendDstAlpha = source.blendDstAlpha; this.blendEquationAlpha = source.blendEquationAlpha; this.depthFunc = source.depthFunc; this.depthTest = source.depthTest; this.depthWrite = source.depthWrite; this.stencilWriteMask = source.stencilWriteMask; this.stencilFunc = source.stencilFunc; this.stencilRef = source.stencilRef; this.stencilFuncMask = source.stencilFuncMask; this.stencilFail = source.stencilFail; this.stencilZFail = source.stencilZFail; this.stencilZPass = source.stencilZPass; this.stencilWrite = source.stencilWrite; const srcPlanes = source.clippingPlanes; let dstPlanes = null; if ( srcPlanes !== null ) { const n = srcPlanes.length; dstPlanes = new Array( n ); for ( let i = 0; i !== n; ++ i ) { dstPlanes[ i ] = srcPlanes[ i ].clone(); } } this.clippingPlanes = dstPlanes; this.clipIntersection = source.clipIntersection; this.clipShadows = source.clipShadows; this.shadowSide = source.shadowSide; this.colorWrite = source.colorWrite; this.precision = source.precision; this.polygonOffset = source.polygonOffset; this.polygonOffsetFactor = source.polygonOffsetFactor; this.polygonOffsetUnits = source.polygonOffsetUnits; this.dithering = source.dithering; this.alphaTest = source.alphaTest; this.alphaToCoverage = source.alphaToCoverage; this.premultipliedAlpha = source.premultipliedAlpha; this.visible = source.visible; this.toneMapped = source.toneMapped; this.userData = JSON.parse( JSON.stringify( source.userData ) ); return this; } dispose() { this.dispatchEvent( { type: 'dispose' } ); } set needsUpdate( value ) { if ( value === true ) this.version ++; } } Material.prototype.isMaterial = true; const _colorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF, 'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2, 'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50, 'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B, 'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B, 'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F, 'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3, 'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222, 'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700, 'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4, 'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00, 'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3, 'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA, 'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32, 'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3, 'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC, 'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD, 'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6, 'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9, 'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'rebeccapurple': 0x663399, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F, 'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE, 'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA, 'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0, 'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 }; const _hslA = { h: 0, s: 0, l: 0 }; const _hslB = { h: 0, s: 0, l: 0 }; function hue2rgb( p, q, t ) { if ( t < 0 ) t += 1; if ( t > 1 ) t -= 1; if ( t < 1 / 6 ) return p + ( q - p ) * 6 * t; if ( t < 1 / 2 ) return q; if ( t < 2 / 3 ) return p + ( q - p ) * 6 * ( 2 / 3 - t ); return p; } function SRGBToLinear( c ) { return ( c < 0.04045 ) ? c * 0.0773993808 : Math.pow( c * 0.9478672986 + 0.0521327014, 2.4 ); } function LinearToSRGB( c ) { return ( c < 0.0031308 ) ? c * 12.92 : 1.055 * ( Math.pow( c, 0.41666 ) ) - 0.055; } class Color { constructor( r, g, b ) { if ( g === undefined && b === undefined ) { // r is THREE.Color, hex or string return this.set( r ); } return this.setRGB( r, g, b ); } set( value ) { if ( value && value.isColor ) { this.copy( value ); } else if ( typeof value === 'number' ) { this.setHex( value ); } else if ( typeof value === 'string' ) { this.setStyle( value ); } return this; } setScalar( scalar ) { this.r = scalar; this.g = scalar; this.b = scalar; return this; } setHex( hex ) { hex = Math.floor( hex ); this.r = ( hex >> 16 & 255 ) / 255; this.g = ( hex >> 8 & 255 ) / 255; this.b = ( hex & 255 ) / 255; return this; } setRGB( r, g, b ) { this.r = r; this.g = g; this.b = b; return this; } setHSL( h, s, l ) { // h,s,l ranges are in 0.0 - 1.0 h = euclideanModulo( h, 1 ); s = clamp( s, 0, 1 ); l = clamp( l, 0, 1 ); if ( s === 0 ) { this.r = this.g = this.b = l; } else { const p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s ); const q = ( 2 * l ) - p; this.r = hue2rgb( q, p, h + 1 / 3 ); this.g = hue2rgb( q, p, h ); this.b = hue2rgb( q, p, h - 1 / 3 ); } return this; } setStyle( style ) { function handleAlpha( string ) { if ( string === undefined ) return; if ( parseFloat( string ) < 1 ) { console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' ); } } let m; if ( m = /^((?:rgb|hsl)a?)\(([^\)]*)\)/.exec( style ) ) { // rgb / hsl let color; const name = m[ 1 ]; const components = m[ 2 ]; switch ( name ) { case 'rgb': case 'rgba': if ( color = /^\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec( components ) ) { // rgb(255,0,0) rgba(255,0,0,0.5) this.r = Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255; this.g = Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255; this.b = Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255; handleAlpha( color[ 4 ] ); return this; } if ( color = /^\s*(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec( components ) ) { // rgb(100%,0%,0%) rgba(100%,0%,0%,0.5) this.r = Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100; this.g = Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100; this.b = Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100; handleAlpha( color[ 4 ] ); return this; } break; case 'hsl': case 'hsla': if ( color = /^\s*(\d*\.?\d+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec( components ) ) { // hsl(120,50%,50%) hsla(120,50%,50%,0.5) const h = parseFloat( color[ 1 ] ) / 360; const s = parseInt( color[ 2 ], 10 ) / 100; const l = parseInt( color[ 3 ], 10 ) / 100; handleAlpha( color[ 4 ] ); return this.setHSL( h, s, l ); } break; } } else if ( m = /^\#([A-Fa-f\d]+)$/.exec( style ) ) { // hex color const hex = m[ 1 ]; const size = hex.length; if ( size === 3 ) { // #ff0 this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 0 ), 16 ) / 255; this.g = parseInt( hex.charAt( 1 ) + hex.charAt( 1 ), 16 ) / 255; this.b = parseInt( hex.charAt( 2 ) + hex.charAt( 2 ), 16 ) / 255; return this; } else if ( size === 6 ) { // #ff0000 this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 1 ), 16 ) / 255; this.g = parseInt( hex.charAt( 2 ) + hex.charAt( 3 ), 16 ) / 255; this.b = parseInt( hex.charAt( 4 ) + hex.charAt( 5 ), 16 ) / 255; return this; } } if ( style && style.length > 0 ) { return this.setColorName( style ); } return this; } setColorName( style ) { // color keywords const hex = _colorKeywords[ style.toLowerCase() ]; if ( hex !== undefined ) { // red this.setHex( hex ); } else { // unknown color console.warn( 'THREE.Color: Unknown color ' + style ); } return this; } clone() { return new this.constructor( this.r, this.g, this.b ); } copy( color ) { this.r = color.r; this.g = color.g; this.b = color.b; return this; } copyGammaToLinear( color, gammaFactor = 2.0 ) { this.r = Math.pow( color.r, gammaFactor ); this.g = Math.pow( color.g, gammaFactor ); this.b = Math.pow( color.b, gammaFactor ); return this; } copyLinearToGamma( color, gammaFactor = 2.0 ) { const safeInverse = ( gammaFactor > 0 ) ? ( 1.0 / gammaFactor ) : 1.0; this.r = Math.pow( color.r, safeInverse ); this.g = Math.pow( color.g, safeInverse ); this.b = Math.pow( color.b, safeInverse ); return this; } convertGammaToLinear( gammaFactor ) { this.copyGammaToLinear( this, gammaFactor ); return this; } convertLinearToGamma( gammaFactor ) { this.copyLinearToGamma( this, gammaFactor ); return this; } copySRGBToLinear( color ) { this.r = SRGBToLinear( color.r ); this.g = SRGBToLinear( color.g ); this.b = SRGBToLinear( color.b ); return this; } copyLinearToSRGB( color ) { this.r = LinearToSRGB( color.r ); this.g = LinearToSRGB( color.g ); this.b = LinearToSRGB( color.b ); return this; } convertSRGBToLinear() { this.copySRGBToLinear( this ); return this; } convertLinearToSRGB() { this.copyLinearToSRGB( this ); return this; } getHex() { return ( this.r * 255 ) << 16 ^ ( this.g * 255 ) << 8 ^ ( this.b * 255 ) << 0; } getHexString() { return ( '000000' + this.getHex().toString( 16 ) ).slice( - 6 ); } getHSL( target ) { // h,s,l ranges are in 0.0 - 1.0 const r = this.r, g = this.g, b = this.b; const max = Math.max( r, g, b ); const min = Math.min( r, g, b ); let hue, saturation; const lightness = ( min + max ) / 2.0; if ( min === max ) { hue = 0; saturation = 0; } else { const delta = max - min; saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min ); switch ( max ) { case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break; case g: hue = ( b - r ) / delta + 2; break; case b: hue = ( r - g ) / delta + 4; break; } hue /= 6; } target.h = hue; target.s = saturation; target.l = lightness; return target; } getStyle() { return 'rgb(' + ( ( this.r * 255 ) | 0 ) + ',' + ( ( this.g * 255 ) | 0 ) + ',' + ( ( this.b * 255 ) | 0 ) + ')'; } offsetHSL( h, s, l ) { this.getHSL( _hslA ); _hslA.h += h; _hslA.s += s; _hslA.l += l; this.setHSL( _hslA.h, _hslA.s, _hslA.l ); return this; } add( color ) { this.r += color.r; this.g += color.g; this.b += color.b; return this; } addColors( color1, color2 ) { this.r = color1.r + color2.r; this.g = color1.g + color2.g; this.b = color1.b + color2.b; return this; } addScalar( s ) { this.r += s; this.g += s; this.b += s; return this; } sub( color ) { this.r = Math.max( 0, this.r - color.r ); this.g = Math.max( 0, this.g - color.g ); this.b = Math.max( 0, this.b - color.b ); return this; } multiply( color ) { this.r *= color.r; this.g *= color.g; this.b *= color.b; return this; } multiplyScalar( s ) { this.r *= s; this.g *= s; this.b *= s; return this; } lerp( color, alpha ) { this.r += ( color.r - this.r ) * alpha; this.g += ( color.g - this.g ) * alpha; this.b += ( color.b - this.b ) * alpha; return this; } lerpColors( color1, color2, alpha ) { this.r = color1.r + ( color2.r - color1.r ) * alpha; this.g = color1.g + ( color2.g - color1.g ) * alpha; this.b = color1.b + ( color2.b - color1.b ) * alpha; return this; } lerpHSL( color, alpha ) { this.getHSL( _hslA ); color.getHSL( _hslB ); const h = lerp( _hslA.h, _hslB.h, alpha ); const s = lerp( _hslA.s, _hslB.s, alpha ); const l = lerp( _hslA.l, _hslB.l, alpha ); this.setHSL( h, s, l ); return this; } equals( c ) { return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b ); } fromArray( array, offset = 0 ) { this.r = array[ offset ]; this.g = array[ offset + 1 ]; this.b = array[ offset + 2 ]; return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this.r; array[ offset + 1 ] = this.g; array[ offset + 2 ] = this.b; return array; } fromBufferAttribute( attribute, index ) { this.r = attribute.getX( index ); this.g = attribute.getY( index ); this.b = attribute.getZ( index ); if ( attribute.normalized === true ) { // assuming Uint8Array this.r /= 255; this.g /= 255; this.b /= 255; } return this; } toJSON() { return this.getHex(); } } Color.NAMES = _colorKeywords; Color.prototype.isColor = true; Color.prototype.r = 1; Color.prototype.g = 1; Color.prototype.b = 1; /** * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * depthTest: , * depthWrite: , * * wireframe: , * wireframeLinewidth: , * } */ class MeshBasicMaterial extends Material { constructor( parameters ) { super(); this.type = 'MeshBasicMaterial'; this.color = new Color( 0xffffff ); // emissive this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.color.copy( source.color ); this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; return this; } } MeshBasicMaterial.prototype.isMeshBasicMaterial = true; const _vector$9 = /*@__PURE__*/ new Vector3(); const _vector2$1 = /*@__PURE__*/ new Vector2(); class BufferAttribute { constructor( array, itemSize, normalized ) { if ( Array.isArray( array ) ) { throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' ); } this.name = ''; this.array = array; this.itemSize = itemSize; this.count = array !== undefined ? array.length / itemSize : 0; this.normalized = normalized === true; this.usage = StaticDrawUsage; this.updateRange = { offset: 0, count: - 1 }; this.version = 0; } onUploadCallback() {} set needsUpdate( value ) { if ( value === true ) this.version ++; } setUsage( value ) { this.usage = value; return this; } copy( source ) { this.name = source.name; this.array = new source.array.constructor( source.array ); this.itemSize = source.itemSize; this.count = source.count; this.normalized = source.normalized; this.usage = source.usage; return this; } copyAt( index1, attribute, index2 ) { index1 *= this.itemSize; index2 *= attribute.itemSize; for ( let i = 0, l = this.itemSize; i < l; i ++ ) { this.array[ index1 + i ] = attribute.array[ index2 + i ]; } return this; } copyArray( array ) { this.array.set( array ); return this; } copyColorsArray( colors ) { const array = this.array; let offset = 0; for ( let i = 0, l = colors.length; i < l; i ++ ) { let color = colors[ i ]; if ( color === undefined ) { console.warn( 'THREE.BufferAttribute.copyColorsArray(): color is undefined', i ); color = new Color(); } array[ offset ++ ] = color.r; array[ offset ++ ] = color.g; array[ offset ++ ] = color.b; } return this; } copyVector2sArray( vectors ) { const array = this.array; let offset = 0; for ( let i = 0, l = vectors.length; i < l; i ++ ) { let vector = vectors[ i ]; if ( vector === undefined ) { console.warn( 'THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i ); vector = new Vector2(); } array[ offset ++ ] = vector.x; array[ offset ++ ] = vector.y; } return this; } copyVector3sArray( vectors ) { const array = this.array; let offset = 0; for ( let i = 0, l = vectors.length; i < l; i ++ ) { let vector = vectors[ i ]; if ( vector === undefined ) { console.warn( 'THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i ); vector = new Vector3(); } array[ offset ++ ] = vector.x; array[ offset ++ ] = vector.y; array[ offset ++ ] = vector.z; } return this; } copyVector4sArray( vectors ) { const array = this.array; let offset = 0; for ( let i = 0, l = vectors.length; i < l; i ++ ) { let vector = vectors[ i ]; if ( vector === undefined ) { console.warn( 'THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i ); vector = new Vector4(); } array[ offset ++ ] = vector.x; array[ offset ++ ] = vector.y; array[ offset ++ ] = vector.z; array[ offset ++ ] = vector.w; } return this; } applyMatrix3( m ) { if ( this.itemSize === 2 ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector2$1.fromBufferAttribute( this, i ); _vector2$1.applyMatrix3( m ); this.setXY( i, _vector2$1.x, _vector2$1.y ); } } else if ( this.itemSize === 3 ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector$9.fromBufferAttribute( this, i ); _vector$9.applyMatrix3( m ); this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z ); } } return this; } applyMatrix4( m ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector$9.x = this.getX( i ); _vector$9.y = this.getY( i ); _vector$9.z = this.getZ( i ); _vector$9.applyMatrix4( m ); this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z ); } return this; } applyNormalMatrix( m ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector$9.x = this.getX( i ); _vector$9.y = this.getY( i ); _vector$9.z = this.getZ( i ); _vector$9.applyNormalMatrix( m ); this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z ); } return this; } transformDirection( m ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector$9.x = this.getX( i ); _vector$9.y = this.getY( i ); _vector$9.z = this.getZ( i ); _vector$9.transformDirection( m ); this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z ); } return this; } set( value, offset = 0 ) { this.array.set( value, offset ); return this; } getX( index ) { return this.array[ index * this.itemSize ]; } setX( index, x ) { this.array[ index * this.itemSize ] = x; return this; } getY( index ) { return this.array[ index * this.itemSize + 1 ]; } setY( index, y ) { this.array[ index * this.itemSize + 1 ] = y; return this; } getZ( index ) { return this.array[ index * this.itemSize + 2 ]; } setZ( index, z ) { this.array[ index * this.itemSize + 2 ] = z; return this; } getW( index ) { return this.array[ index * this.itemSize + 3 ]; } setW( index, w ) { this.array[ index * this.itemSize + 3 ] = w; return this; } setXY( index, x, y ) { index *= this.itemSize; this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; return this; } setXYZ( index, x, y, z ) { index *= this.itemSize; this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; this.array[ index + 2 ] = z; return this; } setXYZW( index, x, y, z, w ) { index *= this.itemSize; this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; this.array[ index + 2 ] = z; this.array[ index + 3 ] = w; return this; } onUpload( callback ) { this.onUploadCallback = callback; return this; } clone() { return new this.constructor( this.array, this.itemSize ).copy( this ); } toJSON() { const data = { itemSize: this.itemSize, type: this.array.constructor.name, array: Array.prototype.slice.call( this.array ), normalized: this.normalized }; if ( this.name !== '' ) data.name = this.name; if ( this.usage !== StaticDrawUsage ) data.usage = this.usage; if ( this.updateRange.offset !== 0 || this.updateRange.count !== - 1 ) data.updateRange = this.updateRange; return data; } } BufferAttribute.prototype.isBufferAttribute = true; // class Int8BufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Int8Array( array ), itemSize, normalized ); } } class Uint8BufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Uint8Array( array ), itemSize, normalized ); } } class Uint8ClampedBufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Uint8ClampedArray( array ), itemSize, normalized ); } } class Int16BufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Int16Array( array ), itemSize, normalized ); } } class Uint16BufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Uint16Array( array ), itemSize, normalized ); } } class Int32BufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Int32Array( array ), itemSize, normalized ); } } class Uint32BufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Uint32Array( array ), itemSize, normalized ); } } class Float16BufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Uint16Array( array ), itemSize, normalized ); } } Float16BufferAttribute.prototype.isFloat16BufferAttribute = true; class Float32BufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Float32Array( array ), itemSize, normalized ); } } class Float64BufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Float64Array( array ), itemSize, normalized ); } } function arrayMax( array ) { if ( array.length === 0 ) return - Infinity; let max = array[ 0 ]; for ( let i = 1, l = array.length; i < l; ++ i ) { if ( array[ i ] > max ) max = array[ i ]; } return max; } const TYPED_ARRAYS = { Int8Array: Int8Array, Uint8Array: Uint8Array, Uint8ClampedArray: Uint8ClampedArray, Int16Array: Int16Array, Uint16Array: Uint16Array, Int32Array: Int32Array, Uint32Array: Uint32Array, Float32Array: Float32Array, Float64Array: Float64Array }; function getTypedArray( type, buffer ) { return new TYPED_ARRAYS[ type ]( buffer ); } let _id = 0; const _m1 = /*@__PURE__*/ new Matrix4(); const _obj = /*@__PURE__*/ new Object3D(); const _offset = /*@__PURE__*/ new Vector3(); const _box$1 = /*@__PURE__*/ new Box3(); const _boxMorphTargets = /*@__PURE__*/ new Box3(); const _vector$8 = /*@__PURE__*/ new Vector3(); class BufferGeometry extends EventDispatcher { constructor() { super(); Object.defineProperty( this, 'id', { value: _id ++ } ); this.uuid = generateUUID(); this.name = ''; this.type = 'BufferGeometry'; this.index = null; this.attributes = {}; this.morphAttributes = {}; this.morphTargetsRelative = false; this.groups = []; this.boundingBox = null; this.boundingSphere = null; this.drawRange = { start: 0, count: Infinity }; this.userData = {}; } getIndex() { return this.index; } setIndex( index ) { if ( Array.isArray( index ) ) { this.index = new ( arrayMax( index ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( index, 1 ); } else { this.index = index; } return this; } getAttribute( name ) { return this.attributes[ name ]; } setAttribute( name, attribute ) { this.attributes[ name ] = attribute; return this; } deleteAttribute( name ) { delete this.attributes[ name ]; return this; } hasAttribute( name ) { return this.attributes[ name ] !== undefined; } addGroup( start, count, materialIndex = 0 ) { this.groups.push( { start: start, count: count, materialIndex: materialIndex } ); } clearGroups() { this.groups = []; } setDrawRange( start, count ) { this.drawRange.start = start; this.drawRange.count = count; } applyMatrix4( matrix ) { const position = this.attributes.position; if ( position !== undefined ) { position.applyMatrix4( matrix ); position.needsUpdate = true; } const normal = this.attributes.normal; if ( normal !== undefined ) { const normalMatrix = new Matrix3().getNormalMatrix( matrix ); normal.applyNormalMatrix( normalMatrix ); normal.needsUpdate = true; } const tangent = this.attributes.tangent; if ( tangent !== undefined ) { tangent.transformDirection( matrix ); tangent.needsUpdate = true; } if ( this.boundingBox !== null ) { this.computeBoundingBox(); } if ( this.boundingSphere !== null ) { this.computeBoundingSphere(); } return this; } applyQuaternion( q ) { _m1.makeRotationFromQuaternion( q ); this.applyMatrix4( _m1 ); return this; } rotateX( angle ) { // rotate geometry around world x-axis _m1.makeRotationX( angle ); this.applyMatrix4( _m1 ); return this; } rotateY( angle ) { // rotate geometry around world y-axis _m1.makeRotationY( angle ); this.applyMatrix4( _m1 ); return this; } rotateZ( angle ) { // rotate geometry around world z-axis _m1.makeRotationZ( angle ); this.applyMatrix4( _m1 ); return this; } translate( x, y, z ) { // translate geometry _m1.makeTranslation( x, y, z ); this.applyMatrix4( _m1 ); return this; } scale( x, y, z ) { // scale geometry _m1.makeScale( x, y, z ); this.applyMatrix4( _m1 ); return this; } lookAt( vector ) { _obj.lookAt( vector ); _obj.updateMatrix(); this.applyMatrix4( _obj.matrix ); return this; } center() { this.computeBoundingBox(); this.boundingBox.getCenter( _offset ).negate(); this.translate( _offset.x, _offset.y, _offset.z ); return this; } setFromPoints( points ) { const position = []; for ( let i = 0, l = points.length; i < l; i ++ ) { const point = points[ i ]; position.push( point.x, point.y, point.z || 0 ); } this.setAttribute( 'position', new Float32BufferAttribute( position, 3 ) ); return this; } computeBoundingBox() { if ( this.boundingBox === null ) { this.boundingBox = new Box3(); } const position = this.attributes.position; const morphAttributesPosition = this.morphAttributes.position; if ( position && position.isGLBufferAttribute ) { console.error( 'THREE.BufferGeometry.computeBoundingBox(): GLBufferAttribute requires a manual bounding box. Alternatively set "mesh.frustumCulled" to "false".', this ); this.boundingBox.set( new Vector3( - Infinity, - Infinity, - Infinity ), new Vector3( + Infinity, + Infinity, + Infinity ) ); return; } if ( position !== undefined ) { this.boundingBox.setFromBufferAttribute( position ); // process morph attributes if present if ( morphAttributesPosition ) { for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) { const morphAttribute = morphAttributesPosition[ i ]; _box$1.setFromBufferAttribute( morphAttribute ); if ( this.morphTargetsRelative ) { _vector$8.addVectors( this.boundingBox.min, _box$1.min ); this.boundingBox.expandByPoint( _vector$8 ); _vector$8.addVectors( this.boundingBox.max, _box$1.max ); this.boundingBox.expandByPoint( _vector$8 ); } else { this.boundingBox.expandByPoint( _box$1.min ); this.boundingBox.expandByPoint( _box$1.max ); } } } } else { this.boundingBox.makeEmpty(); } if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) { console.error( 'THREE.BufferGeometry.computeBoundingBox(): Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this ); } } computeBoundingSphere() { if ( this.boundingSphere === null ) { this.boundingSphere = new Sphere(); } const position = this.attributes.position; const morphAttributesPosition = this.morphAttributes.position; if ( position && position.isGLBufferAttribute ) { console.error( 'THREE.BufferGeometry.computeBoundingSphere(): GLBufferAttribute requires a manual bounding sphere. Alternatively set "mesh.frustumCulled" to "false".', this ); this.boundingSphere.set( new Vector3(), Infinity ); return; } if ( position ) { // first, find the center of the bounding sphere const center = this.boundingSphere.center; _box$1.setFromBufferAttribute( position ); // process morph attributes if present if ( morphAttributesPosition ) { for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) { const morphAttribute = morphAttributesPosition[ i ]; _boxMorphTargets.setFromBufferAttribute( morphAttribute ); if ( this.morphTargetsRelative ) { _vector$8.addVectors( _box$1.min, _boxMorphTargets.min ); _box$1.expandByPoint( _vector$8 ); _vector$8.addVectors( _box$1.max, _boxMorphTargets.max ); _box$1.expandByPoint( _vector$8 ); } else { _box$1.expandByPoint( _boxMorphTargets.min ); _box$1.expandByPoint( _boxMorphTargets.max ); } } } _box$1.getCenter( center ); // second, try to find a boundingSphere with a radius smaller than the // boundingSphere of the boundingBox: sqrt(3) smaller in the best case let maxRadiusSq = 0; for ( let i = 0, il = position.count; i < il; i ++ ) { _vector$8.fromBufferAttribute( position, i ); maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$8 ) ); } // process morph attributes if present if ( morphAttributesPosition ) { for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) { const morphAttribute = morphAttributesPosition[ i ]; const morphTargetsRelative = this.morphTargetsRelative; for ( let j = 0, jl = morphAttribute.count; j < jl; j ++ ) { _vector$8.fromBufferAttribute( morphAttribute, j ); if ( morphTargetsRelative ) { _offset.fromBufferAttribute( position, j ); _vector$8.add( _offset ); } maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$8 ) ); } } } this.boundingSphere.radius = Math.sqrt( maxRadiusSq ); if ( isNaN( this.boundingSphere.radius ) ) { console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this ); } } } computeTangents() { const index = this.index; const attributes = this.attributes; // based on http://www.terathon.com/code/tangent.html // (per vertex tangents) if ( index === null || attributes.position === undefined || attributes.normal === undefined || attributes.uv === undefined ) { console.error( 'THREE.BufferGeometry: .computeTangents() failed. Missing required attributes (index, position, normal or uv)' ); return; } const indices = index.array; const positions = attributes.position.array; const normals = attributes.normal.array; const uvs = attributes.uv.array; const nVertices = positions.length / 3; if ( attributes.tangent === undefined ) { this.setAttribute( 'tangent', new BufferAttribute( new Float32Array( 4 * nVertices ), 4 ) ); } const tangents = attributes.tangent.array; const tan1 = [], tan2 = []; for ( let i = 0; i < nVertices; i ++ ) { tan1[ i ] = new Vector3(); tan2[ i ] = new Vector3(); } const vA = new Vector3(), vB = new Vector3(), vC = new Vector3(), uvA = new Vector2(), uvB = new Vector2(), uvC = new Vector2(), sdir = new Vector3(), tdir = new Vector3(); function handleTriangle( a, b, c ) { vA.fromArray( positions, a * 3 ); vB.fromArray( positions, b * 3 ); vC.fromArray( positions, c * 3 ); uvA.fromArray( uvs, a * 2 ); uvB.fromArray( uvs, b * 2 ); uvC.fromArray( uvs, c * 2 ); vB.sub( vA ); vC.sub( vA ); uvB.sub( uvA ); uvC.sub( uvA ); const r = 1.0 / ( uvB.x * uvC.y - uvC.x * uvB.y ); // silently ignore degenerate uv triangles having coincident or colinear vertices if ( ! isFinite( r ) ) return; sdir.copy( vB ).multiplyScalar( uvC.y ).addScaledVector( vC, - uvB.y ).multiplyScalar( r ); tdir.copy( vC ).multiplyScalar( uvB.x ).addScaledVector( vB, - uvC.x ).multiplyScalar( r ); tan1[ a ].add( sdir ); tan1[ b ].add( sdir ); tan1[ c ].add( sdir ); tan2[ a ].add( tdir ); tan2[ b ].add( tdir ); tan2[ c ].add( tdir ); } let groups = this.groups; if ( groups.length === 0 ) { groups = [ { start: 0, count: indices.length } ]; } for ( let i = 0, il = groups.length; i < il; ++ i ) { const group = groups[ i ]; const start = group.start; const count = group.count; for ( let j = start, jl = start + count; j < jl; j += 3 ) { handleTriangle( indices[ j + 0 ], indices[ j + 1 ], indices[ j + 2 ] ); } } const tmp = new Vector3(), tmp2 = new Vector3(); const n = new Vector3(), n2 = new Vector3(); function handleVertex( v ) { n.fromArray( normals, v * 3 ); n2.copy( n ); const t = tan1[ v ]; // Gram-Schmidt orthogonalize tmp.copy( t ); tmp.sub( n.multiplyScalar( n.dot( t ) ) ).normalize(); // Calculate handedness tmp2.crossVectors( n2, t ); const test = tmp2.dot( tan2[ v ] ); const w = ( test < 0.0 ) ? - 1.0 : 1.0; tangents[ v * 4 ] = tmp.x; tangents[ v * 4 + 1 ] = tmp.y; tangents[ v * 4 + 2 ] = tmp.z; tangents[ v * 4 + 3 ] = w; } for ( let i = 0, il = groups.length; i < il; ++ i ) { const group = groups[ i ]; const start = group.start; const count = group.count; for ( let j = start, jl = start + count; j < jl; j += 3 ) { handleVertex( indices[ j + 0 ] ); handleVertex( indices[ j + 1 ] ); handleVertex( indices[ j + 2 ] ); } } } computeVertexNormals() { const index = this.index; const positionAttribute = this.getAttribute( 'position' ); if ( positionAttribute !== undefined ) { let normalAttribute = this.getAttribute( 'normal' ); if ( normalAttribute === undefined ) { normalAttribute = new BufferAttribute( new Float32Array( positionAttribute.count * 3 ), 3 ); this.setAttribute( 'normal', normalAttribute ); } else { // reset existing normals to zero for ( let i = 0, il = normalAttribute.count; i < il; i ++ ) { normalAttribute.setXYZ( i, 0, 0, 0 ); } } const pA = new Vector3(), pB = new Vector3(), pC = new Vector3(); const nA = new Vector3(), nB = new Vector3(), nC = new Vector3(); const cb = new Vector3(), ab = new Vector3(); // indexed elements if ( index ) { for ( let i = 0, il = index.count; i < il; i += 3 ) { const vA = index.getX( i + 0 ); const vB = index.getX( i + 1 ); const vC = index.getX( i + 2 ); pA.fromBufferAttribute( positionAttribute, vA ); pB.fromBufferAttribute( positionAttribute, vB ); pC.fromBufferAttribute( positionAttribute, vC ); cb.subVectors( pC, pB ); ab.subVectors( pA, pB ); cb.cross( ab ); nA.fromBufferAttribute( normalAttribute, vA ); nB.fromBufferAttribute( normalAttribute, vB ); nC.fromBufferAttribute( normalAttribute, vC ); nA.add( cb ); nB.add( cb ); nC.add( cb ); normalAttribute.setXYZ( vA, nA.x, nA.y, nA.z ); normalAttribute.setXYZ( vB, nB.x, nB.y, nB.z ); normalAttribute.setXYZ( vC, nC.x, nC.y, nC.z ); } } else { // non-indexed elements (unconnected triangle soup) for ( let i = 0, il = positionAttribute.count; i < il; i += 3 ) { pA.fromBufferAttribute( positionAttribute, i + 0 ); pB.fromBufferAttribute( positionAttribute, i + 1 ); pC.fromBufferAttribute( positionAttribute, i + 2 ); cb.subVectors( pC, pB ); ab.subVectors( pA, pB ); cb.cross( ab ); normalAttribute.setXYZ( i + 0, cb.x, cb.y, cb.z ); normalAttribute.setXYZ( i + 1, cb.x, cb.y, cb.z ); normalAttribute.setXYZ( i + 2, cb.x, cb.y, cb.z ); } } this.normalizeNormals(); normalAttribute.needsUpdate = true; } } merge( geometry, offset ) { if ( ! ( geometry && geometry.isBufferGeometry ) ) { console.error( 'THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry ); return; } if ( offset === undefined ) { offset = 0; console.warn( 'THREE.BufferGeometry.merge(): Overwriting original geometry, starting at offset=0. ' + 'Use BufferGeometryUtils.mergeBufferGeometries() for lossless merge.' ); } const attributes = this.attributes; for ( const key in attributes ) { if ( geometry.attributes[ key ] === undefined ) continue; const attribute1 = attributes[ key ]; const attributeArray1 = attribute1.array; const attribute2 = geometry.attributes[ key ]; const attributeArray2 = attribute2.array; const attributeOffset = attribute2.itemSize * offset; const length = Math.min( attributeArray2.length, attributeArray1.length - attributeOffset ); for ( let i = 0, j = attributeOffset; i < length; i ++, j ++ ) { attributeArray1[ j ] = attributeArray2[ i ]; } } return this; } normalizeNormals() { const normals = this.attributes.normal; for ( let i = 0, il = normals.count; i < il; i ++ ) { _vector$8.fromBufferAttribute( normals, i ); _vector$8.normalize(); normals.setXYZ( i, _vector$8.x, _vector$8.y, _vector$8.z ); } } toNonIndexed() { function convertBufferAttribute( attribute, indices ) { const array = attribute.array; const itemSize = attribute.itemSize; const normalized = attribute.normalized; const array2 = new array.constructor( indices.length * itemSize ); let index = 0, index2 = 0; for ( let i = 0, l = indices.length; i < l; i ++ ) { if ( attribute.isInterleavedBufferAttribute ) { index = indices[ i ] * attribute.data.stride + attribute.offset; } else { index = indices[ i ] * itemSize; } for ( let j = 0; j < itemSize; j ++ ) { array2[ index2 ++ ] = array[ index ++ ]; } } return new BufferAttribute( array2, itemSize, normalized ); } // if ( this.index === null ) { console.warn( 'THREE.BufferGeometry.toNonIndexed(): BufferGeometry is already non-indexed.' ); return this; } const geometry2 = new BufferGeometry(); const indices = this.index.array; const attributes = this.attributes; // attributes for ( const name in attributes ) { const attribute = attributes[ name ]; const newAttribute = convertBufferAttribute( attribute, indices ); geometry2.setAttribute( name, newAttribute ); } // morph attributes const morphAttributes = this.morphAttributes; for ( const name in morphAttributes ) { const morphArray = []; const morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes for ( let i = 0, il = morphAttribute.length; i < il; i ++ ) { const attribute = morphAttribute[ i ]; const newAttribute = convertBufferAttribute( attribute, indices ); morphArray.push( newAttribute ); } geometry2.morphAttributes[ name ] = morphArray; } geometry2.morphTargetsRelative = this.morphTargetsRelative; // groups const groups = this.groups; for ( let i = 0, l = groups.length; i < l; i ++ ) { const group = groups[ i ]; geometry2.addGroup( group.start, group.count, group.materialIndex ); } return geometry2; } toJSON() { const data = { metadata: { version: 4.5, type: 'BufferGeometry', generator: 'BufferGeometry.toJSON' } }; // standard BufferGeometry serialization data.uuid = this.uuid; data.type = this.type; if ( this.name !== '' ) data.name = this.name; if ( Object.keys( this.userData ).length > 0 ) data.userData = this.userData; if ( this.parameters !== undefined ) { const parameters = this.parameters; for ( const key in parameters ) { if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ]; } return data; } // for simplicity the code assumes attributes are not shared across geometries, see #15811 data.data = { attributes: {} }; const index = this.index; if ( index !== null ) { data.data.index = { type: index.array.constructor.name, array: Array.prototype.slice.call( index.array ) }; } const attributes = this.attributes; for ( const key in attributes ) { const attribute = attributes[ key ]; data.data.attributes[ key ] = attribute.toJSON( data.data ); } const morphAttributes = {}; let hasMorphAttributes = false; for ( const key in this.morphAttributes ) { const attributeArray = this.morphAttributes[ key ]; const array = []; for ( let i = 0, il = attributeArray.length; i < il; i ++ ) { const attribute = attributeArray[ i ]; array.push( attribute.toJSON( data.data ) ); } if ( array.length > 0 ) { morphAttributes[ key ] = array; hasMorphAttributes = true; } } if ( hasMorphAttributes ) { data.data.morphAttributes = morphAttributes; data.data.morphTargetsRelative = this.morphTargetsRelative; } const groups = this.groups; if ( groups.length > 0 ) { data.data.groups = JSON.parse( JSON.stringify( groups ) ); } const boundingSphere = this.boundingSphere; if ( boundingSphere !== null ) { data.data.boundingSphere = { center: boundingSphere.center.toArray(), radius: boundingSphere.radius }; } return data; } clone() { /* // Handle primitives const parameters = this.parameters; if ( parameters !== undefined ) { const values = []; for ( const key in parameters ) { values.push( parameters[ key ] ); } const geometry = Object.create( this.constructor.prototype ); this.constructor.apply( geometry, values ); return geometry; } return new this.constructor().copy( this ); */ return new BufferGeometry().copy( this ); } copy( source ) { // reset this.index = null; this.attributes = {}; this.morphAttributes = {}; this.groups = []; this.boundingBox = null; this.boundingSphere = null; // used for storing cloned, shared data const data = {}; // name this.name = source.name; // index const index = source.index; if ( index !== null ) { this.setIndex( index.clone( data ) ); } // attributes const attributes = source.attributes; for ( const name in attributes ) { const attribute = attributes[ name ]; this.setAttribute( name, attribute.clone( data ) ); } // morph attributes const morphAttributes = source.morphAttributes; for ( const name in morphAttributes ) { const array = []; const morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes for ( let i = 0, l = morphAttribute.length; i < l; i ++ ) { array.push( morphAttribute[ i ].clone( data ) ); } this.morphAttributes[ name ] = array; } this.morphTargetsRelative = source.morphTargetsRelative; // groups const groups = source.groups; for ( let i = 0, l = groups.length; i < l; i ++ ) { const group = groups[ i ]; this.addGroup( group.start, group.count, group.materialIndex ); } // bounding box const boundingBox = source.boundingBox; if ( boundingBox !== null ) { this.boundingBox = boundingBox.clone(); } // bounding sphere const boundingSphere = source.boundingSphere; if ( boundingSphere !== null ) { this.boundingSphere = boundingSphere.clone(); } // draw range this.drawRange.start = source.drawRange.start; this.drawRange.count = source.drawRange.count; // user data this.userData = source.userData; return this; } dispose() { this.dispatchEvent( { type: 'dispose' } ); } } BufferGeometry.prototype.isBufferGeometry = true; const _inverseMatrix$2 = /*@__PURE__*/ new Matrix4(); const _ray$2 = /*@__PURE__*/ new Ray(); const _sphere$3 = /*@__PURE__*/ new Sphere(); const _vA$1 = /*@__PURE__*/ new Vector3(); const _vB$1 = /*@__PURE__*/ new Vector3(); const _vC$1 = /*@__PURE__*/ new Vector3(); const _tempA = /*@__PURE__*/ new Vector3(); const _tempB = /*@__PURE__*/ new Vector3(); const _tempC = /*@__PURE__*/ new Vector3(); const _morphA = /*@__PURE__*/ new Vector3(); const _morphB = /*@__PURE__*/ new Vector3(); const _morphC = /*@__PURE__*/ new Vector3(); const _uvA$1 = /*@__PURE__*/ new Vector2(); const _uvB$1 = /*@__PURE__*/ new Vector2(); const _uvC$1 = /*@__PURE__*/ new Vector2(); const _intersectionPoint = /*@__PURE__*/ new Vector3(); const _intersectionPointWorld = /*@__PURE__*/ new Vector3(); class Mesh extends Object3D { constructor( geometry = new BufferGeometry(), material = new MeshBasicMaterial() ) { super(); this.type = 'Mesh'; this.geometry = geometry; this.material = material; this.updateMorphTargets(); } copy( source ) { super.copy( source ); if ( source.morphTargetInfluences !== undefined ) { this.morphTargetInfluences = source.morphTargetInfluences.slice(); } if ( source.morphTargetDictionary !== undefined ) { this.morphTargetDictionary = Object.assign( {}, source.morphTargetDictionary ); } this.material = source.material; this.geometry = source.geometry; return this; } updateMorphTargets() { const geometry = this.geometry; if ( geometry.isBufferGeometry ) { const morphAttributes = geometry.morphAttributes; const keys = Object.keys( morphAttributes ); if ( keys.length > 0 ) { const morphAttribute = morphAttributes[ keys[ 0 ] ]; if ( morphAttribute !== undefined ) { this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) { const name = morphAttribute[ m ].name || String( m ); this.morphTargetInfluences.push( 0 ); this.morphTargetDictionary[ name ] = m; } } } } else { const morphTargets = geometry.morphTargets; if ( morphTargets !== undefined && morphTargets.length > 0 ) { console.error( 'THREE.Mesh.updateMorphTargets() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.' ); } } } raycast( raycaster, intersects ) { const geometry = this.geometry; const material = this.material; const matrixWorld = this.matrixWorld; if ( material === undefined ) return; // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); _sphere$3.copy( geometry.boundingSphere ); _sphere$3.applyMatrix4( matrixWorld ); if ( raycaster.ray.intersectsSphere( _sphere$3 ) === false ) return; // _inverseMatrix$2.copy( matrixWorld ).invert(); _ray$2.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$2 ); // Check boundingBox before continuing if ( geometry.boundingBox !== null ) { if ( _ray$2.intersectsBox( geometry.boundingBox ) === false ) return; } let intersection; if ( geometry.isBufferGeometry ) { const index = geometry.index; const position = geometry.attributes.position; const morphPosition = geometry.morphAttributes.position; const morphTargetsRelative = geometry.morphTargetsRelative; const uv = geometry.attributes.uv; const uv2 = geometry.attributes.uv2; const groups = geometry.groups; const drawRange = geometry.drawRange; if ( index !== null ) { // indexed buffer geometry if ( Array.isArray( material ) ) { for ( let i = 0, il = groups.length; i < il; i ++ ) { const group = groups[ i ]; const groupMaterial = material[ group.materialIndex ]; const start = Math.max( group.start, drawRange.start ); const end = Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) ); for ( let j = start, jl = end; j < jl; j += 3 ) { const a = index.getX( j ); const b = index.getX( j + 1 ); const c = index.getX( j + 2 ); intersection = checkBufferGeometryIntersection( this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c ); if ( intersection ) { intersection.faceIndex = Math.floor( j / 3 ); // triangle number in indexed buffer semantics intersection.face.materialIndex = group.materialIndex; intersects.push( intersection ); } } } } else { const start = Math.max( 0, drawRange.start ); const end = Math.min( index.count, ( drawRange.start + drawRange.count ) ); for ( let i = start, il = end; i < il; i += 3 ) { const a = index.getX( i ); const b = index.getX( i + 1 ); const c = index.getX( i + 2 ); intersection = checkBufferGeometryIntersection( this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c ); if ( intersection ) { intersection.faceIndex = Math.floor( i / 3 ); // triangle number in indexed buffer semantics intersects.push( intersection ); } } } } else if ( position !== undefined ) { // non-indexed buffer geometry if ( Array.isArray( material ) ) { for ( let i = 0, il = groups.length; i < il; i ++ ) { const group = groups[ i ]; const groupMaterial = material[ group.materialIndex ]; const start = Math.max( group.start, drawRange.start ); const end = Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) ); for ( let j = start, jl = end; j < jl; j += 3 ) { const a = j; const b = j + 1; const c = j + 2; intersection = checkBufferGeometryIntersection( this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c ); if ( intersection ) { intersection.faceIndex = Math.floor( j / 3 ); // triangle number in non-indexed buffer semantics intersection.face.materialIndex = group.materialIndex; intersects.push( intersection ); } } } } else { const start = Math.max( 0, drawRange.start ); const end = Math.min( position.count, ( drawRange.start + drawRange.count ) ); for ( let i = start, il = end; i < il; i += 3 ) { const a = i; const b = i + 1; const c = i + 2; intersection = checkBufferGeometryIntersection( this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c ); if ( intersection ) { intersection.faceIndex = Math.floor( i / 3 ); // triangle number in non-indexed buffer semantics intersects.push( intersection ); } } } } } else if ( geometry.isGeometry ) { console.error( 'THREE.Mesh.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.' ); } } } Mesh.prototype.isMesh = true; function checkIntersection( object, material, raycaster, ray, pA, pB, pC, point ) { let intersect; if ( material.side === BackSide ) { intersect = ray.intersectTriangle( pC, pB, pA, true, point ); } else { intersect = ray.intersectTriangle( pA, pB, pC, material.side !== DoubleSide, point ); } if ( intersect === null ) return null; _intersectionPointWorld.copy( point ); _intersectionPointWorld.applyMatrix4( object.matrixWorld ); const distance = raycaster.ray.origin.distanceTo( _intersectionPointWorld ); if ( distance < raycaster.near || distance > raycaster.far ) return null; return { distance: distance, point: _intersectionPointWorld.clone(), object: object }; } function checkBufferGeometryIntersection( object, material, raycaster, ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c ) { _vA$1.fromBufferAttribute( position, a ); _vB$1.fromBufferAttribute( position, b ); _vC$1.fromBufferAttribute( position, c ); const morphInfluences = object.morphTargetInfluences; if ( morphPosition && morphInfluences ) { _morphA.set( 0, 0, 0 ); _morphB.set( 0, 0, 0 ); _morphC.set( 0, 0, 0 ); for ( let i = 0, il = morphPosition.length; i < il; i ++ ) { const influence = morphInfluences[ i ]; const morphAttribute = morphPosition[ i ]; if ( influence === 0 ) continue; _tempA.fromBufferAttribute( morphAttribute, a ); _tempB.fromBufferAttribute( morphAttribute, b ); _tempC.fromBufferAttribute( morphAttribute, c ); if ( morphTargetsRelative ) { _morphA.addScaledVector( _tempA, influence ); _morphB.addScaledVector( _tempB, influence ); _morphC.addScaledVector( _tempC, influence ); } else { _morphA.addScaledVector( _tempA.sub( _vA$1 ), influence ); _morphB.addScaledVector( _tempB.sub( _vB$1 ), influence ); _morphC.addScaledVector( _tempC.sub( _vC$1 ), influence ); } } _vA$1.add( _morphA ); _vB$1.add( _morphB ); _vC$1.add( _morphC ); } if ( object.isSkinnedMesh ) { object.boneTransform( a, _vA$1 ); object.boneTransform( b, _vB$1 ); object.boneTransform( c, _vC$1 ); } const intersection = checkIntersection( object, material, raycaster, ray, _vA$1, _vB$1, _vC$1, _intersectionPoint ); if ( intersection ) { if ( uv ) { _uvA$1.fromBufferAttribute( uv, a ); _uvB$1.fromBufferAttribute( uv, b ); _uvC$1.fromBufferAttribute( uv, c ); intersection.uv = Triangle.getUV( _intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2() ); } if ( uv2 ) { _uvA$1.fromBufferAttribute( uv2, a ); _uvB$1.fromBufferAttribute( uv2, b ); _uvC$1.fromBufferAttribute( uv2, c ); intersection.uv2 = Triangle.getUV( _intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2() ); } const face = { a: a, b: b, c: c, normal: new Vector3(), materialIndex: 0 }; Triangle.getNormal( _vA$1, _vB$1, _vC$1, face.normal ); intersection.face = face; } return intersection; } class BoxGeometry extends BufferGeometry { constructor( width = 1, height = 1, depth = 1, widthSegments = 1, heightSegments = 1, depthSegments = 1 ) { super(); this.type = 'BoxGeometry'; this.parameters = { width: width, height: height, depth: depth, widthSegments: widthSegments, heightSegments: heightSegments, depthSegments: depthSegments }; const scope = this; // segments widthSegments = Math.floor( widthSegments ); heightSegments = Math.floor( heightSegments ); depthSegments = Math.floor( depthSegments ); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // helper variables let numberOfVertices = 0; let groupStart = 0; // build each side of the box geometry buildPlane( 'z', 'y', 'x', - 1, - 1, depth, height, width, depthSegments, heightSegments, 0 ); // px buildPlane( 'z', 'y', 'x', 1, - 1, depth, height, - width, depthSegments, heightSegments, 1 ); // nx buildPlane( 'x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2 ); // py buildPlane( 'x', 'z', 'y', 1, - 1, width, depth, - height, widthSegments, depthSegments, 3 ); // ny buildPlane( 'x', 'y', 'z', 1, - 1, width, height, depth, widthSegments, heightSegments, 4 ); // pz buildPlane( 'x', 'y', 'z', - 1, - 1, width, height, - depth, widthSegments, heightSegments, 5 ); // nz // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); function buildPlane( u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex ) { const segmentWidth = width / gridX; const segmentHeight = height / gridY; const widthHalf = width / 2; const heightHalf = height / 2; const depthHalf = depth / 2; const gridX1 = gridX + 1; const gridY1 = gridY + 1; let vertexCounter = 0; let groupCount = 0; const vector = new Vector3(); // generate vertices, normals and uvs for ( let iy = 0; iy < gridY1; iy ++ ) { const y = iy * segmentHeight - heightHalf; for ( let ix = 0; ix < gridX1; ix ++ ) { const x = ix * segmentWidth - widthHalf; // set values to correct vector component vector[ u ] = x * udir; vector[ v ] = y * vdir; vector[ w ] = depthHalf; // now apply vector to vertex buffer vertices.push( vector.x, vector.y, vector.z ); // set values to correct vector component vector[ u ] = 0; vector[ v ] = 0; vector[ w ] = depth > 0 ? 1 : - 1; // now apply vector to normal buffer normals.push( vector.x, vector.y, vector.z ); // uvs uvs.push( ix / gridX ); uvs.push( 1 - ( iy / gridY ) ); // counters vertexCounter += 1; } } // indices // 1. you need three indices to draw a single face // 2. a single segment consists of two faces // 3. so we need to generate six (2*3) indices per segment for ( let iy = 0; iy < gridY; iy ++ ) { for ( let ix = 0; ix < gridX; ix ++ ) { const a = numberOfVertices + ix + gridX1 * iy; const b = numberOfVertices + ix + gridX1 * ( iy + 1 ); const c = numberOfVertices + ( ix + 1 ) + gridX1 * ( iy + 1 ); const d = numberOfVertices + ( ix + 1 ) + gridX1 * iy; // faces indices.push( a, b, d ); indices.push( b, c, d ); // increase counter groupCount += 6; } } // add a group to the geometry. this will ensure multi material support scope.addGroup( groupStart, groupCount, materialIndex ); // calculate new start value for groups groupStart += groupCount; // update total number of vertices numberOfVertices += vertexCounter; } } static fromJSON( data ) { return new BoxGeometry( data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments ); } } /** * Uniform Utilities */ function cloneUniforms( src ) { const dst = {}; for ( const u in src ) { dst[ u ] = {}; for ( const p in src[ u ] ) { const property = src[ u ][ p ]; if ( property && ( property.isColor || property.isMatrix3 || property.isMatrix4 || property.isVector2 || property.isVector3 || property.isVector4 || property.isTexture || property.isQuaternion ) ) { dst[ u ][ p ] = property.clone(); } else if ( Array.isArray( property ) ) { dst[ u ][ p ] = property.slice(); } else { dst[ u ][ p ] = property; } } } return dst; } function mergeUniforms( uniforms ) { const merged = {}; for ( let u = 0; u < uniforms.length; u ++ ) { const tmp = cloneUniforms( uniforms[ u ] ); for ( const p in tmp ) { merged[ p ] = tmp[ p ]; } } return merged; } // Legacy const UniformsUtils = { clone: cloneUniforms, merge: mergeUniforms }; var default_vertex = "void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}"; var default_fragment = "void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}"; /** * parameters = { * defines: { "label" : "value" }, * uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } }, * * fragmentShader: , * vertexShader: , * * wireframe: , * wireframeLinewidth: , * * lights: * } */ class ShaderMaterial extends Material { constructor( parameters ) { super(); this.type = 'ShaderMaterial'; this.defines = {}; this.uniforms = {}; this.vertexShader = default_vertex; this.fragmentShader = default_fragment; this.linewidth = 1; this.wireframe = false; this.wireframeLinewidth = 1; this.fog = false; // set to use scene fog this.lights = false; // set to use scene lights this.clipping = false; // set to use user-defined clipping planes this.extensions = { derivatives: false, // set to use derivatives fragDepth: false, // set to use fragment depth values drawBuffers: false, // set to use draw buffers shaderTextureLOD: false // set to use shader texture LOD }; // When rendered geometry doesn't include these attributes but the material does, // use these default values in WebGL. This avoids errors when buffer data is missing. this.defaultAttributeValues = { 'color': [ 1, 1, 1 ], 'uv': [ 0, 0 ], 'uv2': [ 0, 0 ] }; this.index0AttributeName = undefined; this.uniformsNeedUpdate = false; this.glslVersion = null; if ( parameters !== undefined ) { if ( parameters.attributes !== undefined ) { console.error( 'THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.' ); } this.setValues( parameters ); } } copy( source ) { super.copy( source ); this.fragmentShader = source.fragmentShader; this.vertexShader = source.vertexShader; this.uniforms = cloneUniforms( source.uniforms ); this.defines = Object.assign( {}, source.defines ); this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.lights = source.lights; this.clipping = source.clipping; this.extensions = Object.assign( {}, source.extensions ); this.glslVersion = source.glslVersion; return this; } toJSON( meta ) { const data = super.toJSON( meta ); data.glslVersion = this.glslVersion; data.uniforms = {}; for ( const name in this.uniforms ) { const uniform = this.uniforms[ name ]; const value = uniform.value; if ( value && value.isTexture ) { data.uniforms[ name ] = { type: 't', value: value.toJSON( meta ).uuid }; } else if ( value && value.isColor ) { data.uniforms[ name ] = { type: 'c', value: value.getHex() }; } else if ( value && value.isVector2 ) { data.uniforms[ name ] = { type: 'v2', value: value.toArray() }; } else if ( value && value.isVector3 ) { data.uniforms[ name ] = { type: 'v3', value: value.toArray() }; } else if ( value && value.isVector4 ) { data.uniforms[ name ] = { type: 'v4', value: value.toArray() }; } else if ( value && value.isMatrix3 ) { data.uniforms[ name ] = { type: 'm3', value: value.toArray() }; } else if ( value && value.isMatrix4 ) { data.uniforms[ name ] = { type: 'm4', value: value.toArray() }; } else { data.uniforms[ name ] = { value: value }; // note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far } } if ( Object.keys( this.defines ).length > 0 ) data.defines = this.defines; data.vertexShader = this.vertexShader; data.fragmentShader = this.fragmentShader; const extensions = {}; for ( const key in this.extensions ) { if ( this.extensions[ key ] === true ) extensions[ key ] = true; } if ( Object.keys( extensions ).length > 0 ) data.extensions = extensions; return data; } } ShaderMaterial.prototype.isShaderMaterial = true; class Camera extends Object3D { constructor() { super(); this.type = 'Camera'; this.matrixWorldInverse = new Matrix4(); this.projectionMatrix = new Matrix4(); this.projectionMatrixInverse = new Matrix4(); } copy( source, recursive ) { super.copy( source, recursive ); this.matrixWorldInverse.copy( source.matrixWorldInverse ); this.projectionMatrix.copy( source.projectionMatrix ); this.projectionMatrixInverse.copy( source.projectionMatrixInverse ); return this; } getWorldDirection( target ) { this.updateWorldMatrix( true, false ); const e = this.matrixWorld.elements; return target.set( - e[ 8 ], - e[ 9 ], - e[ 10 ] ).normalize(); } updateMatrixWorld( force ) { super.updateMatrixWorld( force ); this.matrixWorldInverse.copy( this.matrixWorld ).invert(); } updateWorldMatrix( updateParents, updateChildren ) { super.updateWorldMatrix( updateParents, updateChildren ); this.matrixWorldInverse.copy( this.matrixWorld ).invert(); } clone() { return new this.constructor().copy( this ); } } Camera.prototype.isCamera = true; class PerspectiveCamera extends Camera { constructor( fov = 50, aspect = 1, near = 0.1, far = 2000 ) { super(); this.type = 'PerspectiveCamera'; this.fov = fov; this.zoom = 1; this.near = near; this.far = far; this.focus = 10; this.aspect = aspect; this.view = null; this.filmGauge = 35; // width of the film (default in millimeters) this.filmOffset = 0; // horizontal film offset (same unit as gauge) this.updateProjectionMatrix(); } copy( source, recursive ) { super.copy( source, recursive ); this.fov = source.fov; this.zoom = source.zoom; this.near = source.near; this.far = source.far; this.focus = source.focus; this.aspect = source.aspect; this.view = source.view === null ? null : Object.assign( {}, source.view ); this.filmGauge = source.filmGauge; this.filmOffset = source.filmOffset; return this; } /** * Sets the FOV by focal length in respect to the current .filmGauge. * * The default film gauge is 35, so that the focal length can be specified for * a 35mm (full frame) camera. * * Values for focal length and film gauge must have the same unit. */ setFocalLength( focalLength ) { /** see {@link http://www.bobatkins.com/photography/technical/field_of_view.html} */ const vExtentSlope = 0.5 * this.getFilmHeight() / focalLength; this.fov = RAD2DEG * 2 * Math.atan( vExtentSlope ); this.updateProjectionMatrix(); } /** * Calculates the focal length from the current .fov and .filmGauge. */ getFocalLength() { const vExtentSlope = Math.tan( DEG2RAD * 0.5 * this.fov ); return 0.5 * this.getFilmHeight() / vExtentSlope; } getEffectiveFOV() { return RAD2DEG * 2 * Math.atan( Math.tan( DEG2RAD * 0.5 * this.fov ) / this.zoom ); } getFilmWidth() { // film not completely covered in portrait format (aspect < 1) return this.filmGauge * Math.min( this.aspect, 1 ); } getFilmHeight() { // film not completely covered in landscape format (aspect > 1) return this.filmGauge / Math.max( this.aspect, 1 ); } /** * Sets an offset in a larger frustum. This is useful for multi-window or * multi-monitor/multi-machine setups. * * For example, if you have 3x2 monitors and each monitor is 1920x1080 and * the monitors are in grid like this * * +---+---+---+ * | A | B | C | * +---+---+---+ * | D | E | F | * +---+---+---+ * * then for each monitor you would call it like this * * const w = 1920; * const h = 1080; * const fullWidth = w * 3; * const fullHeight = h * 2; * * --A-- * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h ); * --B-- * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h ); * --C-- * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h ); * --D-- * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h ); * --E-- * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h ); * --F-- * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h ); * * Note there is no reason monitors have to be the same size or in a grid. */ setViewOffset( fullWidth, fullHeight, x, y, width, height ) { this.aspect = fullWidth / fullHeight; if ( this.view === null ) { this.view = { enabled: true, fullWidth: 1, fullHeight: 1, offsetX: 0, offsetY: 0, width: 1, height: 1 }; } this.view.enabled = true; this.view.fullWidth = fullWidth; this.view.fullHeight = fullHeight; this.view.offsetX = x; this.view.offsetY = y; this.view.width = width; this.view.height = height; this.updateProjectionMatrix(); } clearViewOffset() { if ( this.view !== null ) { this.view.enabled = false; } this.updateProjectionMatrix(); } updateProjectionMatrix() { const near = this.near; let top = near * Math.tan( DEG2RAD * 0.5 * this.fov ) / this.zoom; let height = 2 * top; let width = this.aspect * height; let left = - 0.5 * width; const view = this.view; if ( this.view !== null && this.view.enabled ) { const fullWidth = view.fullWidth, fullHeight = view.fullHeight; left += view.offsetX * width / fullWidth; top -= view.offsetY * height / fullHeight; width *= view.width / fullWidth; height *= view.height / fullHeight; } const skew = this.filmOffset; if ( skew !== 0 ) left += near * skew / this.getFilmWidth(); this.projectionMatrix.makePerspective( left, left + width, top, top - height, near, this.far ); this.projectionMatrixInverse.copy( this.projectionMatrix ).invert(); } toJSON( meta ) { const data = super.toJSON( meta ); data.object.fov = this.fov; data.object.zoom = this.zoom; data.object.near = this.near; data.object.far = this.far; data.object.focus = this.focus; data.object.aspect = this.aspect; if ( this.view !== null ) data.object.view = Object.assign( {}, this.view ); data.object.filmGauge = this.filmGauge; data.object.filmOffset = this.filmOffset; return data; } } PerspectiveCamera.prototype.isPerspectiveCamera = true; const fov = 90, aspect = 1; class CubeCamera extends Object3D { constructor( near, far, renderTarget ) { super(); this.type = 'CubeCamera'; if ( renderTarget.isWebGLCubeRenderTarget !== true ) { console.error( 'THREE.CubeCamera: The constructor now expects an instance of WebGLCubeRenderTarget as third parameter.' ); return; } this.renderTarget = renderTarget; const cameraPX = new PerspectiveCamera( fov, aspect, near, far ); cameraPX.layers = this.layers; cameraPX.up.set( 0, - 1, 0 ); cameraPX.lookAt( new Vector3( 1, 0, 0 ) ); this.add( cameraPX ); const cameraNX = new PerspectiveCamera( fov, aspect, near, far ); cameraNX.layers = this.layers; cameraNX.up.set( 0, - 1, 0 ); cameraNX.lookAt( new Vector3( - 1, 0, 0 ) ); this.add( cameraNX ); const cameraPY = new PerspectiveCamera( fov, aspect, near, far ); cameraPY.layers = this.layers; cameraPY.up.set( 0, 0, 1 ); cameraPY.lookAt( new Vector3( 0, 1, 0 ) ); this.add( cameraPY ); const cameraNY = new PerspectiveCamera( fov, aspect, near, far ); cameraNY.layers = this.layers; cameraNY.up.set( 0, 0, - 1 ); cameraNY.lookAt( new Vector3( 0, - 1, 0 ) ); this.add( cameraNY ); const cameraPZ = new PerspectiveCamera( fov, aspect, near, far ); cameraPZ.layers = this.layers; cameraPZ.up.set( 0, - 1, 0 ); cameraPZ.lookAt( new Vector3( 0, 0, 1 ) ); this.add( cameraPZ ); const cameraNZ = new PerspectiveCamera( fov, aspect, near, far ); cameraNZ.layers = this.layers; cameraNZ.up.set( 0, - 1, 0 ); cameraNZ.lookAt( new Vector3( 0, 0, - 1 ) ); this.add( cameraNZ ); } update( renderer, scene ) { if ( this.parent === null ) this.updateMatrixWorld(); const renderTarget = this.renderTarget; const [ cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ ] = this.children; const currentXrEnabled = renderer.xr.enabled; const currentRenderTarget = renderer.getRenderTarget(); renderer.xr.enabled = false; const generateMipmaps = renderTarget.texture.generateMipmaps; renderTarget.texture.generateMipmaps = false; renderer.setRenderTarget( renderTarget, 0 ); renderer.render( scene, cameraPX ); renderer.setRenderTarget( renderTarget, 1 ); renderer.render( scene, cameraNX ); renderer.setRenderTarget( renderTarget, 2 ); renderer.render( scene, cameraPY ); renderer.setRenderTarget( renderTarget, 3 ); renderer.render( scene, cameraNY ); renderer.setRenderTarget( renderTarget, 4 ); renderer.render( scene, cameraPZ ); renderTarget.texture.generateMipmaps = generateMipmaps; renderer.setRenderTarget( renderTarget, 5 ); renderer.render( scene, cameraNZ ); renderer.setRenderTarget( currentRenderTarget ); renderer.xr.enabled = currentXrEnabled; } } class CubeTexture extends Texture { constructor( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) { images = images !== undefined ? images : []; mapping = mapping !== undefined ? mapping : CubeReflectionMapping; format = format !== undefined ? format : RGBFormat; super( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ); this.flipY = false; } get images() { return this.image; } set images( value ) { this.image = value; } } CubeTexture.prototype.isCubeTexture = true; class WebGLCubeRenderTarget extends WebGLRenderTarget { constructor( size, options, dummy ) { if ( Number.isInteger( options ) ) { console.warn( 'THREE.WebGLCubeRenderTarget: constructor signature is now WebGLCubeRenderTarget( size, options )' ); options = dummy; } super( size, size, options ); options = options || {}; // By convention -- likely based on the RenderMan spec from the 1990's -- cube maps are specified by WebGL (and three.js) // in a coordinate system in which positive-x is to the right when looking up the positive-z axis -- in other words, // in a left-handed coordinate system. By continuing this convention, preexisting cube maps continued to render correctly. // three.js uses a right-handed coordinate system. So environment maps used in three.js appear to have px and nx swapped // and the flag isRenderTargetTexture controls this conversion. The flip is not required when using WebGLCubeRenderTarget.texture // as a cube texture (this is detected when isRenderTargetTexture is set to true for cube textures). this.texture = new CubeTexture( undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding ); this.texture.isRenderTargetTexture = true; this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false; this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter; this.texture._needsFlipEnvMap = false; } fromEquirectangularTexture( renderer, texture ) { this.texture.type = texture.type; this.texture.format = RGBAFormat; // see #18859 this.texture.encoding = texture.encoding; this.texture.generateMipmaps = texture.generateMipmaps; this.texture.minFilter = texture.minFilter; this.texture.magFilter = texture.magFilter; const shader = { uniforms: { tEquirect: { value: null }, }, vertexShader: /* glsl */` varying vec3 vWorldDirection; vec3 transformDirection( in vec3 dir, in mat4 matrix ) { return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz ); } void main() { vWorldDirection = transformDirection( position, modelMatrix ); #include #include } `, fragmentShader: /* glsl */` uniform sampler2D tEquirect; varying vec3 vWorldDirection; #include void main() { vec3 direction = normalize( vWorldDirection ); vec2 sampleUV = equirectUv( direction ); gl_FragColor = texture2D( tEquirect, sampleUV ); } ` }; const geometry = new BoxGeometry( 5, 5, 5 ); const material = new ShaderMaterial( { name: 'CubemapFromEquirect', uniforms: cloneUniforms( shader.uniforms ), vertexShader: shader.vertexShader, fragmentShader: shader.fragmentShader, side: BackSide, blending: NoBlending } ); material.uniforms.tEquirect.value = texture; const mesh = new Mesh( geometry, material ); const currentMinFilter = texture.minFilter; // Avoid blurred poles if ( texture.minFilter === LinearMipmapLinearFilter ) texture.minFilter = LinearFilter; const camera = new CubeCamera( 1, 10, this ); camera.update( renderer, mesh ); texture.minFilter = currentMinFilter; mesh.geometry.dispose(); mesh.material.dispose(); return this; } clear( renderer, color, depth, stencil ) { const currentRenderTarget = renderer.getRenderTarget(); for ( let i = 0; i < 6; i ++ ) { renderer.setRenderTarget( this, i ); renderer.clear( color, depth, stencil ); } renderer.setRenderTarget( currentRenderTarget ); } } WebGLCubeRenderTarget.prototype.isWebGLCubeRenderTarget = true; const _vector1 = /*@__PURE__*/ new Vector3(); const _vector2 = /*@__PURE__*/ new Vector3(); const _normalMatrix = /*@__PURE__*/ new Matrix3(); class Plane { constructor( normal = new Vector3( 1, 0, 0 ), constant = 0 ) { // normal is assumed to be normalized this.normal = normal; this.constant = constant; } set( normal, constant ) { this.normal.copy( normal ); this.constant = constant; return this; } setComponents( x, y, z, w ) { this.normal.set( x, y, z ); this.constant = w; return this; } setFromNormalAndCoplanarPoint( normal, point ) { this.normal.copy( normal ); this.constant = - point.dot( this.normal ); return this; } setFromCoplanarPoints( a, b, c ) { const normal = _vector1.subVectors( c, b ).cross( _vector2.subVectors( a, b ) ).normalize(); // Q: should an error be thrown if normal is zero (e.g. degenerate plane)? this.setFromNormalAndCoplanarPoint( normal, a ); return this; } copy( plane ) { this.normal.copy( plane.normal ); this.constant = plane.constant; return this; } normalize() { // Note: will lead to a divide by zero if the plane is invalid. const inverseNormalLength = 1.0 / this.normal.length(); this.normal.multiplyScalar( inverseNormalLength ); this.constant *= inverseNormalLength; return this; } negate() { this.constant *= - 1; this.normal.negate(); return this; } distanceToPoint( point ) { return this.normal.dot( point ) + this.constant; } distanceToSphere( sphere ) { return this.distanceToPoint( sphere.center ) - sphere.radius; } projectPoint( point, target ) { return target.copy( this.normal ).multiplyScalar( - this.distanceToPoint( point ) ).add( point ); } intersectLine( line, target ) { const direction = line.delta( _vector1 ); const denominator = this.normal.dot( direction ); if ( denominator === 0 ) { // line is coplanar, return origin if ( this.distanceToPoint( line.start ) === 0 ) { return target.copy( line.start ); } // Unsure if this is the correct method to handle this case. return null; } const t = - ( line.start.dot( this.normal ) + this.constant ) / denominator; if ( t < 0 || t > 1 ) { return null; } return target.copy( direction ).multiplyScalar( t ).add( line.start ); } intersectsLine( line ) { // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it. const startSign = this.distanceToPoint( line.start ); const endSign = this.distanceToPoint( line.end ); return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 ); } intersectsBox( box ) { return box.intersectsPlane( this ); } intersectsSphere( sphere ) { return sphere.intersectsPlane( this ); } coplanarPoint( target ) { return target.copy( this.normal ).multiplyScalar( - this.constant ); } applyMatrix4( matrix, optionalNormalMatrix ) { const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix( matrix ); const referencePoint = this.coplanarPoint( _vector1 ).applyMatrix4( matrix ); const normal = this.normal.applyMatrix3( normalMatrix ).normalize(); this.constant = - referencePoint.dot( normal ); return this; } translate( offset ) { this.constant -= offset.dot( this.normal ); return this; } equals( plane ) { return plane.normal.equals( this.normal ) && ( plane.constant === this.constant ); } clone() { return new this.constructor().copy( this ); } } Plane.prototype.isPlane = true; const _sphere$2 = /*@__PURE__*/ new Sphere(); const _vector$7 = /*@__PURE__*/ new Vector3(); class Frustum { constructor( p0 = new Plane(), p1 = new Plane(), p2 = new Plane(), p3 = new Plane(), p4 = new Plane(), p5 = new Plane() ) { this.planes = [ p0, p1, p2, p3, p4, p5 ]; } set( p0, p1, p2, p3, p4, p5 ) { const planes = this.planes; planes[ 0 ].copy( p0 ); planes[ 1 ].copy( p1 ); planes[ 2 ].copy( p2 ); planes[ 3 ].copy( p3 ); planes[ 4 ].copy( p4 ); planes[ 5 ].copy( p5 ); return this; } copy( frustum ) { const planes = this.planes; for ( let i = 0; i < 6; i ++ ) { planes[ i ].copy( frustum.planes[ i ] ); } return this; } setFromProjectionMatrix( m ) { const planes = this.planes; const me = m.elements; const me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ]; const me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ]; const me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ]; const me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ]; planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize(); planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize(); planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize(); planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize(); planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize(); planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize(); return this; } intersectsObject( object ) { const geometry = object.geometry; if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); _sphere$2.copy( geometry.boundingSphere ).applyMatrix4( object.matrixWorld ); return this.intersectsSphere( _sphere$2 ); } intersectsSprite( sprite ) { _sphere$2.center.set( 0, 0, 0 ); _sphere$2.radius = 0.7071067811865476; _sphere$2.applyMatrix4( sprite.matrixWorld ); return this.intersectsSphere( _sphere$2 ); } intersectsSphere( sphere ) { const planes = this.planes; const center = sphere.center; const negRadius = - sphere.radius; for ( let i = 0; i < 6; i ++ ) { const distance = planes[ i ].distanceToPoint( center ); if ( distance < negRadius ) { return false; } } return true; } intersectsBox( box ) { const planes = this.planes; for ( let i = 0; i < 6; i ++ ) { const plane = planes[ i ]; // corner at max distance _vector$7.x = plane.normal.x > 0 ? box.max.x : box.min.x; _vector$7.y = plane.normal.y > 0 ? box.max.y : box.min.y; _vector$7.z = plane.normal.z > 0 ? box.max.z : box.min.z; if ( plane.distanceToPoint( _vector$7 ) < 0 ) { return false; } } return true; } containsPoint( point ) { const planes = this.planes; for ( let i = 0; i < 6; i ++ ) { if ( planes[ i ].distanceToPoint( point ) < 0 ) { return false; } } return true; } clone() { return new this.constructor().copy( this ); } } function WebGLAnimation() { let context = null; let isAnimating = false; let animationLoop = null; let requestId = null; function onAnimationFrame( time, frame ) { animationLoop( time, frame ); requestId = context.requestAnimationFrame( onAnimationFrame ); } return { start: function () { if ( isAnimating === true ) return; if ( animationLoop === null ) return; requestId = context.requestAnimationFrame( onAnimationFrame ); isAnimating = true; }, stop: function () { context.cancelAnimationFrame( requestId ); isAnimating = false; }, setAnimationLoop: function ( callback ) { animationLoop = callback; }, setContext: function ( value ) { context = value; } }; } function WebGLAttributes( gl, capabilities ) { const isWebGL2 = capabilities.isWebGL2; const buffers = new WeakMap(); function createBuffer( attribute, bufferType ) { const array = attribute.array; const usage = attribute.usage; const buffer = gl.createBuffer(); gl.bindBuffer( bufferType, buffer ); gl.bufferData( bufferType, array, usage ); attribute.onUploadCallback(); let type = 5126; if ( array instanceof Float32Array ) { type = 5126; } else if ( array instanceof Float64Array ) { console.warn( 'THREE.WebGLAttributes: Unsupported data buffer format: Float64Array.' ); } else if ( array instanceof Uint16Array ) { if ( attribute.isFloat16BufferAttribute ) { if ( isWebGL2 ) { type = 5131; } else { console.warn( 'THREE.WebGLAttributes: Usage of Float16BufferAttribute requires WebGL2.' ); } } else { type = 5123; } } else if ( array instanceof Int16Array ) { type = 5122; } else if ( array instanceof Uint32Array ) { type = 5125; } else if ( array instanceof Int32Array ) { type = 5124; } else if ( array instanceof Int8Array ) { type = 5120; } else if ( array instanceof Uint8Array ) { type = 5121; } else if ( array instanceof Uint8ClampedArray ) { type = 5121; } return { buffer: buffer, type: type, bytesPerElement: array.BYTES_PER_ELEMENT, version: attribute.version }; } function updateBuffer( buffer, attribute, bufferType ) { const array = attribute.array; const updateRange = attribute.updateRange; gl.bindBuffer( bufferType, buffer ); if ( updateRange.count === - 1 ) { // Not using update ranges gl.bufferSubData( bufferType, 0, array ); } else { if ( isWebGL2 ) { gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array, updateRange.offset, updateRange.count ); } else { gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array.subarray( updateRange.offset, updateRange.offset + updateRange.count ) ); } updateRange.count = - 1; // reset range } } // function get( attribute ) { if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data; return buffers.get( attribute ); } function remove( attribute ) { if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data; const data = buffers.get( attribute ); if ( data ) { gl.deleteBuffer( data.buffer ); buffers.delete( attribute ); } } function update( attribute, bufferType ) { if ( attribute.isGLBufferAttribute ) { const cached = buffers.get( attribute ); if ( ! cached || cached.version < attribute.version ) { buffers.set( attribute, { buffer: attribute.buffer, type: attribute.type, bytesPerElement: attribute.elementSize, version: attribute.version } ); } return; } if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data; const data = buffers.get( attribute ); if ( data === undefined ) { buffers.set( attribute, createBuffer( attribute, bufferType ) ); } else if ( data.version < attribute.version ) { updateBuffer( data.buffer, attribute, bufferType ); data.version = attribute.version; } } return { get: get, remove: remove, update: update }; } class PlaneGeometry extends BufferGeometry { constructor( width = 1, height = 1, widthSegments = 1, heightSegments = 1 ) { super(); this.type = 'PlaneGeometry'; this.parameters = { width: width, height: height, widthSegments: widthSegments, heightSegments: heightSegments }; const width_half = width / 2; const height_half = height / 2; const gridX = Math.floor( widthSegments ); const gridY = Math.floor( heightSegments ); const gridX1 = gridX + 1; const gridY1 = gridY + 1; const segment_width = width / gridX; const segment_height = height / gridY; // const indices = []; const vertices = []; const normals = []; const uvs = []; for ( let iy = 0; iy < gridY1; iy ++ ) { const y = iy * segment_height - height_half; for ( let ix = 0; ix < gridX1; ix ++ ) { const x = ix * segment_width - width_half; vertices.push( x, - y, 0 ); normals.push( 0, 0, 1 ); uvs.push( ix / gridX ); uvs.push( 1 - ( iy / gridY ) ); } } for ( let iy = 0; iy < gridY; iy ++ ) { for ( let ix = 0; ix < gridX; ix ++ ) { const a = ix + gridX1 * iy; const b = ix + gridX1 * ( iy + 1 ); const c = ( ix + 1 ) + gridX1 * ( iy + 1 ); const d = ( ix + 1 ) + gridX1 * iy; indices.push( a, b, d ); indices.push( b, c, d ); } } this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } static fromJSON( data ) { return new PlaneGeometry( data.width, data.height, data.widthSegments, data.heightSegments ); } } var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif"; var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif"; var alphatest_fragment = "#ifdef USE_ALPHATEST\n\tif ( diffuseColor.a < alphaTest ) discard;\n#endif"; var alphatest_pars_fragment = "#ifdef USE_ALPHATEST\n\tuniform float alphaTest;\n#endif"; var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( STANDARD )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.roughness );\n\t#endif\n#endif"; var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif"; var begin_vertex = "vec3 transformed = vec3( position );"; var beginnormal_vertex = "vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n\tvec3 objectTangent = vec3( tangent.xyz );\n#endif"; var bsdfs = "vec3 BRDF_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) {\n\tfloat fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );\n\treturn f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );\n}\nfloat V_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_GGX( const in IncidentLight incidentLight, const in vec3 viewDir, const in vec3 normal, const in vec3 f0, const in float f90, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( incidentLight.direction + viewDir );\n\tfloat dotNL = saturate( dot( normal, incidentLight.direction ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( f0, f90, dotVH );\n\tfloat V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( V * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\n\tfloat dotVH = saturate( dot( geometry.viewDir, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, 1.0, dotVH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie( float roughness, float NoH ) {\n\tfloat invAlpha = 1.0 / roughness;\n\tfloat cos2h = NoH * NoH;\n\tfloat sin2h = max( 1.0 - cos2h, 0.0078125 );\n\treturn ( 2.0 + invAlpha ) * pow( sin2h, invAlpha * 0.5 ) / ( 2.0 * PI );\n}\nfloat V_Neubelt( float NoV, float NoL ) {\n\treturn saturate( 1.0 / ( 4.0 * ( NoL + NoV - NoL * NoV ) ) );\n}\nvec3 BRDF_Sheen( const in float roughness, const in vec3 L, const in GeometricContext geometry, vec3 specularColor ) {\n\tvec3 N = geometry.normal;\n\tvec3 V = geometry.viewDir;\n\tvec3 H = normalize( V + L );\n\tfloat dotNH = saturate( dot( N, H ) );\n\treturn specularColor * D_Charlie( roughness, dotNH ) * V_Neubelt( dot(N, V), dot(N, L) );\n}\n#endif"; var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 ) * faceDirection;\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif"; var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#pragma unroll_loop_end\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\tif ( clipped ) discard;\n\t#endif\n#endif"; var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif"; var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif"; var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif"; var color_fragment = "#if defined( USE_COLOR_ALPHA )\n\tdiffuseColor *= vColor;\n#elif defined( USE_COLOR )\n\tdiffuseColor.rgb *= vColor;\n#endif"; var color_pars_fragment = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR )\n\tvarying vec3 vColor;\n#endif"; var color_pars_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvarying vec3 vColor;\n#endif"; var color_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvColor = vec4( 1.0 );\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvColor = vec3( 1.0 );\n#endif\n#ifdef USE_COLOR\n\tvColor *= color;\n#endif\n#ifdef USE_INSTANCING_COLOR\n\tvColor.xyz *= instanceColor.xyz;\n#endif"; var common = "#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement( a ) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract( sin( sn ) * c );\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal;\n#endif\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n\treturn m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}"; var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n\t#define cubeUV_maxMipLevel 8.0\n\t#define cubeUV_minMipLevel 4.0\n\t#define cubeUV_maxTileSize 256.0\n\t#define cubeUV_minTileSize 16.0\n\tfloat getFace( vec3 direction ) {\n\t\tvec3 absDirection = abs( direction );\n\t\tfloat face = - 1.0;\n\t\tif ( absDirection.x > absDirection.z ) {\n\t\t\tif ( absDirection.x > absDirection.y )\n\t\t\t\tface = direction.x > 0.0 ? 0.0 : 3.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t} else {\n\t\t\tif ( absDirection.z > absDirection.y )\n\t\t\t\tface = direction.z > 0.0 ? 2.0 : 5.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t}\n\t\treturn face;\n\t}\n\tvec2 getUV( vec3 direction, float face ) {\n\t\tvec2 uv;\n\t\tif ( face == 0.0 ) {\n\t\t\tuv = vec2( direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 1.0 ) {\n\t\t\tuv = vec2( - direction.x, - direction.z ) / abs( direction.y );\n\t\t} else if ( face == 2.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.y ) / abs( direction.z );\n\t\t} else if ( face == 3.0 ) {\n\t\t\tuv = vec2( - direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 4.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.z ) / abs( direction.y );\n\t\t} else {\n\t\t\tuv = vec2( direction.x, direction.y ) / abs( direction.z );\n\t\t}\n\t\treturn 0.5 * ( uv + 1.0 );\n\t}\n\tvec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {\n\t\tfloat face = getFace( direction );\n\t\tfloat filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );\n\t\tmipInt = max( mipInt, cubeUV_minMipLevel );\n\t\tfloat faceSize = exp2( mipInt );\n\t\tfloat texelSize = 1.0 / ( 3.0 * cubeUV_maxTileSize );\n\t\tvec2 uv = getUV( direction, face ) * ( faceSize - 1.0 );\n\t\tvec2 f = fract( uv );\n\t\tuv += 0.5 - f;\n\t\tif ( face > 2.0 ) {\n\t\t\tuv.y += faceSize;\n\t\t\tface -= 3.0;\n\t\t}\n\t\tuv.x += face * faceSize;\n\t\tif ( mipInt < cubeUV_maxMipLevel ) {\n\t\t\tuv.y += 2.0 * cubeUV_maxTileSize;\n\t\t}\n\t\tuv.y += filterInt * 2.0 * cubeUV_minTileSize;\n\t\tuv.x += 3.0 * max( 0.0, cubeUV_maxTileSize - 2.0 * faceSize );\n\t\tuv *= texelSize;\n\t\tvec3 tl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.x += texelSize;\n\t\tvec3 tr = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.y += texelSize;\n\t\tvec3 br = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.x -= texelSize;\n\t\tvec3 bl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tvec3 tm = mix( tl, tr, f.x );\n\t\tvec3 bm = mix( bl, br, f.x );\n\t\treturn mix( tm, bm, f.y );\n\t}\n\t#define r0 1.0\n\t#define v0 0.339\n\t#define m0 - 2.0\n\t#define r1 0.8\n\t#define v1 0.276\n\t#define m1 - 1.0\n\t#define r4 0.4\n\t#define v4 0.046\n\t#define m4 2.0\n\t#define r5 0.305\n\t#define v5 0.016\n\t#define m5 3.0\n\t#define r6 0.21\n\t#define v6 0.0038\n\t#define m6 4.0\n\tfloat roughnessToMip( float roughness ) {\n\t\tfloat mip = 0.0;\n\t\tif ( roughness >= r1 ) {\n\t\t\tmip = ( r0 - roughness ) * ( m1 - m0 ) / ( r0 - r1 ) + m0;\n\t\t} else if ( roughness >= r4 ) {\n\t\t\tmip = ( r1 - roughness ) * ( m4 - m1 ) / ( r1 - r4 ) + m1;\n\t\t} else if ( roughness >= r5 ) {\n\t\t\tmip = ( r4 - roughness ) * ( m5 - m4 ) / ( r4 - r5 ) + m4;\n\t\t} else if ( roughness >= r6 ) {\n\t\t\tmip = ( r5 - roughness ) * ( m6 - m5 ) / ( r5 - r6 ) + m5;\n\t\t} else {\n\t\t\tmip = - 2.0 * log2( 1.16 * roughness );\t\t}\n\t\treturn mip;\n\t}\n\tvec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {\n\t\tfloat mip = clamp( roughnessToMip( roughness ), m0, cubeUV_maxMipLevel );\n\t\tfloat mipF = fract( mip );\n\t\tfloat mipInt = floor( mip );\n\t\tvec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );\n\t\tif ( mipF == 0.0 ) {\n\t\t\treturn vec4( color0, 1.0 );\n\t\t} else {\n\t\t\tvec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );\n\t\t\treturn vec4( mix( color0, color1, mipF ), 1.0 );\n\t\t}\n\t}\n#endif"; var defaultnormal_vertex = "vec3 transformedNormal = objectNormal;\n#ifdef USE_INSTANCING\n\tmat3 m = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );\n\ttransformedNormal = m * transformedNormal;\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif"; var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif"; var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias );\n#endif"; var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif"; var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif"; var encodings_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );"; var encodings_pars_fragment = "\nvec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( gammaFactor ) ), value.a );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( 1.0 / gammaFactor ) ), value.a );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * value.a * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat M = clamp( maxRGB / maxRange, 0.0, 1.0 );\n\tM = ceil( M * 255.0 ) / 255.0;\n\treturn vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat D = max( maxRange / maxRGB, 1.0 );\n\tD = clamp( floor( D ) / 255.0, 0.0, 1.0 );\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value ) {\n\tvec3 Xp_Y_XYZp = cLogLuvM * value.rgb;\n\tXp_Y_XYZp = max( Xp_Y_XYZp, vec3( 1e-6, 1e-6, 1e-6 ) );\n\tvec4 vResult;\n\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n\tvResult.w = fract( Le );\n\tvResult.z = ( Le - ( floor( vResult.w * 255.0 ) ) / 255.0 ) / 255.0;\n\treturn vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n\tfloat Le = value.z * 255.0 + value.w;\n\tvec3 Xp_Y_XYZp;\n\tXp_Y_XYZp.y = exp2( ( Le - 127.0 ) / 2.0 );\n\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n\tvec3 vRGB = cLogLuvInverseM * Xp_Y_XYZp.rgb;\n\treturn vec4( max( vRGB, 0.0 ), 1.0 );\n}"; var envmap_fragment = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t\tenvColor = envMapTexelToLinear( envColor );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif"; var envmap_common_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\tuniform int maxMipLevel;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif"; var envmap_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif"; var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif"; var envmap_vertex = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif"; var fog_vertex = "#ifdef USE_FOG\n\tvFogDepth = - mvPosition.z;\n#endif"; var fog_pars_vertex = "#ifdef USE_FOG\n\tvarying float vFogDepth;\n#endif"; var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * vFogDepth * vFogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, vFogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif"; var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float vFogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif"; var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn texture2D( gradientMap, coord ).rgb;\n\t#else\n\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t#endif\n}"; var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tlightMapIrradiance *= PI;\n\t#endif\n\treflectedLight.indirectDiffuse += lightMapIrradiance;\n#endif"; var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif"; var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\nvIndirectFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n\tvIndirectBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\nvIndirectFront += getAmbientLightIrradiance( ambientLightColor );\nvIndirectFront += getLightProbeIrradiance( lightProbe, geometry );\n#ifdef DOUBLE_SIDED\n\tvIndirectBack += getAmbientLightIrradiance( ambientLightColor );\n\tvIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry );\n#endif\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointLightInfo( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotLightInfo( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalLightInfo( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif"; var lights_pars_begin = "uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\nuniform vec3 lightProbe[ 9 ];\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in GeometricContext geometry ) {\n\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\treturn irradiance;\n}\nfloat getDistanceAttenuation( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n\t#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\t\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\t\tif ( cutoffDistance > 0.0 ) {\n\t\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t\t}\n\t\treturn distanceFalloff;\n\t#else\n\t\tif ( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n\t\t\treturn pow( saturate( - lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t\t}\n\t\treturn 1.0;\n\t#endif\n}\nfloat getSpotAttenuation( const in float coneCosine, const in float penumbraCosine, const in float angleCosine ) {\n\treturn smoothstep( coneCosine, penumbraCosine, angleCosine );\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalLightInfo( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tlight.color = directionalLight.color;\n\t\tlight.direction = directionalLight.direction;\n\t\tlight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointLightInfo( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tlight.color = pointLight.color;\n\t\tlight.color *= getDistanceAttenuation( lightDistance, pointLight.distance, pointLight.decay );\n\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotLightInfo( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat angleCos = dot( light.direction, spotLight.direction );\n\t\tfloat spotAttenuation = getSpotAttenuation( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\tif ( spotAttenuation > 0.0 ) {\n\t\t\tfloat lightDistance = length( lVector );\n\t\t\tlight.color = spotLight.color * spotAttenuation;\n\t\t\tlight.color *= getDistanceAttenuation( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t\t} else {\n\t\t\tlight.color = vec3( 0.0 );\n\t\t\tlight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\n\t\tfloat dotNL = dot( geometry.normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\treturn irradiance;\n\t}\n#endif"; var envmap_physical_pars_fragment = "#if defined( USE_ENVMAP )\n\t#ifdef ENVMAP_MODE_REFRACTION\n\t\tuniform float refractionRatio;\n\t#endif\n\tvec3 getIBLIrradiance( const in GeometricContext geometry ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );\n\t\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n\tvec3 getIBLRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 reflectVec;\n\t\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\t\treflectVec = reflect( - viewDir, normal );\n\t\t\t\treflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t\t#else\n\t\t\t\treflectVec = refract( - viewDir, normal, refractionRatio );\n\t\t\t#endif\n\t\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );\n\t\t\treturn envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n#endif"; var lights_toon_fragment = "ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;"; var lights_toon_pars_fragment = "varying vec3 vViewPosition;\nstruct ToonMaterial {\n\tvec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon\n#define Material_LightProbeLOD( material )\t(0)"; var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;"; var lights_phong_pars_fragment = "varying vec3 vViewPosition;\nstruct BlinnPhongMaterial {\n\tvec3 diffuseColor;\n\tvec3 specularColor;\n\tfloat specularShininess;\n\tfloat specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)"; var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.roughness = max( roughnessFactor, 0.0525 );material.roughness += geometryRoughness;\nmaterial.roughness = min( material.roughness, 1.0 );\n#ifdef IOR\n\t#ifdef SPECULAR\n\t\tfloat specularIntensityFactor = specularIntensity;\n\t\tvec3 specularTintFactor = specularTint;\n\t\t#ifdef USE_SPECULARINTENSITYMAP\n\t\t\tspecularIntensityFactor *= texture2D( specularIntensityMap, vUv ).a;\n\t\t#endif\n\t\t#ifdef USE_SPECULARTINTMAP\n\t\t\tspecularTintFactor *= specularTintMapTexelToLinear( texture2D( specularTintMap, vUv ) ).rgb;\n\t\t#endif\n\t\tmaterial.specularF90 = mix( specularIntensityFactor, 1.0, metalnessFactor );\n\t#else\n\t\tfloat specularIntensityFactor = 1.0;\n\t\tvec3 specularTintFactor = vec3( 1.0 );\n\t\tmaterial.specularF90 = 1.0;\n\t#endif\n\tmaterial.specularColor = mix( min( pow2( ( ior - 1.0 ) / ( ior + 1.0 ) ) * specularTintFactor, vec3( 1.0 ) ) * specularIntensityFactor, diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor );\n\tmaterial.specularF90 = 1.0;\n#endif\n#ifdef USE_CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\tmaterial.clearcoatF0 = vec3( 0.04 );\n\tmaterial.clearcoatF90 = 1.0;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenTint = sheenTint;\n#endif"; var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3 diffuseColor;\n\tfloat roughness;\n\tvec3 specularColor;\n\tfloat specularF90;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat clearcoat;\n\t\tfloat clearcoatRoughness;\n\t\tvec3 clearcoatF0;\n\t\tfloat clearcoatF90;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tvec3 sheenTint;\n\t#endif\n};\nvec3 clearcoatSpecular = vec3( 0.0 );\nvec2 DFGApprox( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\tvec2 fab = vec2( - 1.04, 1.04 ) * a004 + r.zw;\n\treturn fab;\n}\nvec3 EnvironmentBRDF( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\treturn specularColor * fab.x + specularF90 * fab.y;\n}\nvoid computeMultiscattering( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\tvec3 FssEss = specularColor * fab.x + specularF90 * fab.y;\n\tfloat Ess = fab.x + fab.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.roughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3( 0, 1, 0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNLcc = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = dotNLcc * directLight.color;\n\t\tclearcoatSpecular += ccIrradiance * BRDF_GGX( directLight, geometry.viewDir, geometry.clearcoatNormal, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\treflectedLight.directSpecular += irradiance * BRDF_Sheen( material.roughness, directLight.direction, geometry, material.sheenTint );\n\t#else\n\t\treflectedLight.directSpecular += irradiance * BRDF_GGX( directLight, geometry.viewDir, geometry.normal, material.specularColor, material.specularF90, material.roughness );\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatSpecular += clearcoatRadiance * EnvironmentBRDF( geometry.clearcoatNormal, geometry.viewDir, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\tcomputeMultiscattering( geometry.normal, geometry.viewDir, material.specularColor, material.specularF90, material.roughness, singleScattering, multiScattering );\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) );\n\treflectedLight.indirectSpecular += radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}"; var lights_fragment_begin = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n#ifdef USE_CLEARCOAT\n\tgeometry.clearcoatNormal = clearcoatNormal;\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointLightInfo( pointLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotLightInfo( spotLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalLightInfo( directionalLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\tirradiance += getLightProbeIrradiance( lightProbe, geometry );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif"; var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\t\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getIBLIrradiance( geometry );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getIBLRadiance( geometry.viewDir, geometry.normal, material.roughness );\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatRadiance += getIBLRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness );\n\t#endif\n#endif"; var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );\n#endif"; var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif"; var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif"; var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t\tvarying float vIsPerspective;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif"; var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n\t#else\n\t\tif ( isPerspectiveMatrix( projectionMatrix ) ) {\n\t\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\t\tgl_Position.z *= gl_Position.w;\n\t\t}\n\t#endif\n#endif"; var map_fragment = "#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif"; var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif"; var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n#endif\n#ifdef USE_MAP\n\tvec4 mapTexel = texture2D( map, uv );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif"; var map_particle_pars_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tuniform mat3 uvTransform;\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif"; var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif"; var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif"; var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\tobjectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n\tobjectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n\tobjectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n\tobjectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n#endif"; var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\tuniform float morphTargetBaseInfluence;\n\t#ifndef USE_MORPHNORMALS\n\t\tuniform float morphTargetInfluences[ 8 ];\n\t#else\n\t\tuniform float morphTargetInfluences[ 4 ];\n\t#endif\n#endif"; var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\ttransformed += morphTarget0 * morphTargetInfluences[ 0 ];\n\ttransformed += morphTarget1 * morphTargetInfluences[ 1 ];\n\ttransformed += morphTarget2 * morphTargetInfluences[ 2 ];\n\ttransformed += morphTarget3 * morphTargetInfluences[ 3 ];\n\t#ifndef USE_MORPHNORMALS\n\t\ttransformed += morphTarget4 * morphTargetInfluences[ 4 ];\n\t\ttransformed += morphTarget5 * morphTargetInfluences[ 5 ];\n\t\ttransformed += morphTarget6 * morphTargetInfluences[ 6 ];\n\t\ttransformed += morphTarget7 * morphTargetInfluences[ 7 ];\n\t#endif\n#endif"; var normal_fragment_begin = "float faceDirection = gl_FrontFacing ? 1.0 : - 1.0;\n#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\t#ifdef USE_TANGENT\n\t\tvec3 tangent = normalize( vTangent );\n\t\tvec3 bitangent = normalize( vBitangent );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\ttangent = tangent * faceDirection;\n\t\t\tbitangent = bitangent * faceDirection;\n\t\t#endif\n\t\t#if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tmat3 vTBN = mat3( tangent, bitangent, normal );\n\t\t#endif\n\t#endif\n#endif\nvec3 geometryNormal = normal;"; var normal_fragment_maps = "#ifdef OBJECTSPACE_NORMALMAP\n\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( TANGENTSPACE_NORMALMAP )\n\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\t#ifdef USE_TANGENT\n\t\tnormal = normalize( vTBN * mapN );\n\t#else\n\t\tnormal = perturbNormal2Arb( - vViewPosition, normal, mapN, faceDirection );\n\t#endif\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( - vViewPosition, normal, dHdxy_fwd(), faceDirection );\n#endif"; var normal_pars_fragment = "#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif"; var normal_pars_vertex = "#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif"; var normal_vertex = "#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif"; var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef OBJECTSPACE_NORMALMAP\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN, float faceDirection ) {\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tvec3 N = surf_norm;\n\t\tvec3 q1perp = cross( q1, N );\n\t\tvec3 q0perp = cross( N, q0 );\n\t\tvec3 T = q1perp * st0.x + q0perp * st1.x;\n\t\tvec3 B = q1perp * st0.y + q0perp * st1.y;\n\t\tfloat det = max( dot( T, T ), dot( B, B ) );\n\t\tfloat scale = ( det == 0.0 ) ? 0.0 : faceDirection * inversesqrt( det );\n\t\treturn normalize( T * ( mapN.x * scale ) + B * ( mapN.y * scale ) + N * mapN.z );\n\t}\n#endif"; var clearcoat_normal_fragment_begin = "#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal = geometryNormal;\n#endif"; var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\t#ifdef USE_TANGENT\n\t\tclearcoatNormal = normalize( vTBN * clearcoatMapN );\n\t#else\n\t\tclearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN, faceDirection );\n\t#endif\n#endif"; var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif"; var output_fragment = "#ifdef OPAQUE\ndiffuseColor.a = 1.0;\n#endif\n#ifdef USE_TRANSMISSION\ndiffuseColor.a *= transmissionAlpha + 0.1;\n#endif\ngl_FragColor = vec4( outgoingLight, diffuseColor.a );"; var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ) );\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w );\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( ( near + viewZ ) * far ) / ( ( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}"; var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif"; var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;"; var dithering_fragment = "#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif"; var dithering_pars_fragment = "#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif"; var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif"; var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif"; var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif"; var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif"; var shadowmap_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0 || NUM_SPOT_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0\n\t\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\tvec4 shadowWorldPosition;\n\t#endif\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n#endif"; var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}"; var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif"; var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform highp sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif"; var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif"; var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif"; var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif"; var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif"; var tonemapping_fragment = "#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif"; var tonemapping_pars_fragment = "#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3( 1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108, 1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605, 1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }"; var transmission_fragment = "#ifdef USE_TRANSMISSION\n\tfloat transmissionAlpha = 1.0;\n\tfloat transmissionFactor = transmission;\n\tfloat thicknessFactor = thickness;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\ttransmissionFactor *= texture2D( transmissionMap, vUv ).r;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tthicknessFactor *= texture2D( thicknessMap, vUv ).g;\n\t#endif\n\tvec3 pos = vWorldPosition;\n\tvec3 v = normalize( cameraPosition - pos );\n\tvec3 n = inverseTransformDirection( normal, viewMatrix );\n\tvec4 transmission = getIBLVolumeRefraction(\n\t\tn, v, roughnessFactor, material.diffuseColor, material.specularColor, material.specularF90,\n\t\tpos, modelMatrix, viewMatrix, projectionMatrix, ior, thicknessFactor,\n\t\tattenuationTint, attenuationDistance );\n\ttotalDiffuse = mix( totalDiffuse, transmission.rgb, transmissionFactor );\n\ttransmissionAlpha = transmission.a;\n#endif"; var transmission_pars_fragment = "#ifdef USE_TRANSMISSION\n\tuniform float transmission;\n\tuniform float thickness;\n\tuniform float attenuationDistance;\n\tuniform vec3 attenuationTint;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\tuniform sampler2D transmissionMap;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tuniform sampler2D thicknessMap;\n\t#endif\n\tuniform vec2 transmissionSamplerSize;\n\tuniform sampler2D transmissionSamplerMap;\n\tuniform mat4 modelMatrix;\n\tuniform mat4 projectionMatrix;\n\tvarying vec3 vWorldPosition;\n\tvec3 getVolumeTransmissionRay( vec3 n, vec3 v, float thickness, float ior, mat4 modelMatrix ) {\n\t\tvec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior );\n\t\tvec3 modelScale;\n\t\tmodelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) );\n\t\tmodelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) );\n\t\tmodelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) );\n\t\treturn normalize( refractionVector ) * thickness * modelScale;\n\t}\n\tfloat applyIorToRoughness( float roughness, float ior ) {\n\t\treturn roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 );\n\t}\n\tvec4 getTransmissionSample( vec2 fragCoord, float roughness, float ior ) {\n\t\tfloat framebufferLod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior );\n\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\treturn texture2DLodEXT( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#else\n\t\t\treturn texture2D( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#endif\n\t}\n\tvec3 applyVolumeAttenuation( vec3 radiance, float transmissionDistance, vec3 attenuationColor, float attenuationDistance ) {\n\t\tif ( attenuationDistance == 0.0 ) {\n\t\t\treturn radiance;\n\t\t} else {\n\t\t\tvec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance;\n\t\t\tvec3 transmittance = exp( - attenuationCoefficient * transmissionDistance );\t\t\treturn transmittance * radiance;\n\t\t}\n\t}\n\tvec4 getIBLVolumeRefraction( vec3 n, vec3 v, float roughness, vec3 diffuseColor, vec3 specularColor, float specularF90,\n\t\tvec3 position, mat4 modelMatrix, mat4 viewMatrix, mat4 projMatrix, float ior, float thickness,\n\t\tvec3 attenuationColor, float attenuationDistance ) {\n\t\tvec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );\n\t\tvec3 refractedRayExit = position + transmissionRay;\n\t\tvec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );\n\t\tvec2 refractionCoords = ndcPos.xy / ndcPos.w;\n\t\trefractionCoords += 1.0;\n\t\trefractionCoords /= 2.0;\n\t\tvec4 transmittedLight = getTransmissionSample( refractionCoords, roughness, ior );\n\t\tvec3 attenuatedColor = applyVolumeAttenuation( transmittedLight.rgb, length( transmissionRay ), attenuationColor, attenuationDistance );\n\t\tvec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness );\n\t\treturn vec4( ( 1.0 - F ) * attenuatedColor * diffuseColor, transmittedLight.a );\n\t}\n#endif"; var uv_pars_fragment = "#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )\n\tvarying vec2 vUv;\n#endif"; var uv_pars_vertex = "#ifdef USE_UV\n\t#ifdef UVS_VERTEX_ONLY\n\t\tvec2 vUv;\n\t#else\n\t\tvarying vec2 vUv;\n\t#endif\n\tuniform mat3 uvTransform;\n#endif"; var uv_vertex = "#ifdef USE_UV\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif"; var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif"; var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n\tuniform mat3 uv2Transform;\n#endif"; var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy;\n#endif"; var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION )\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif"; var background_frag = "uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include \n\t#include \n}"; var background_vert = "varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}"; var cube_frag = "#include \nuniform float opacity;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 vReflect = vWorldDirection;\n\t#include \n\tgl_FragColor = envColor;\n\tgl_FragColor.a *= opacity;\n\t#include \n\t#include \n}"; var cube_vert = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n\tgl_Position.z = gl_Position.w;\n}"; var depth_frag = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#endif\n}"; var depth_vert = "#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvHighPrecisionZW = gl_Position.zw;\n}"; var distanceRGBA_frag = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main () {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include \n\t#include \n\t#include \n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}"; var distanceRGBA_vert = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvWorldPosition = worldPosition.xyz;\n}"; var equirect_frag = "uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tvec4 texColor = texture2D( tEquirect, sampleUV );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include \n\t#include \n}"; var equirect_vert = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n}"; var linedashed_frag = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var linedashed_vert = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshbasic_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\treflectedLight.indirectDiffuse += lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshbasic_vert = "#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#if defined ( USE_ENVMAP ) || defined ( USE_SKINNING )\n\t\t#include \n\t\t#include \n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshlambert_frag = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.indirectDiffuse += ( gl_FrontFacing ) ? vIndirectFront : vIndirectBack;\n\t#else\n\t\treflectedLight.indirectDiffuse += vIndirectFront;\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= BRDF_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshlambert_vert = "#define LAMBERT\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshmatcap_frag = "#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\t#ifdef USE_MATCAP\n\t\tvec4 matcapColor = texture2D( matcap, uv );\n\t\tmatcapColor = matcapTexelToLinear( matcapColor );\n\t#else\n\t\tvec4 matcapColor = vec4( 1.0 );\n\t#endif\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshmatcap_vert = "#define MATCAP\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n}"; var meshnormal_frag = "#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n}"; var meshnormal_vert = "#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}"; var meshphong_frag = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshphong_vert = "#define PHONG\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshphysical_frag = "#define STANDARD\n#ifdef PHYSICAL\n\t#define IOR\n\t#define SPECULAR\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef IOR\n\tuniform float ior;\n#endif\n#ifdef SPECULAR\n\tuniform float specularIntensity;\n\tuniform vec3 specularTint;\n\t#ifdef USE_SPECULARINTENSITYMAP\n\t\tuniform sampler2D specularIntensityMap;\n\t#endif\n\t#ifdef USE_SPECULARTINTMAP\n\t\tuniform sampler2D specularTintMap;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheenTint;\n#endif\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n\tvec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n\t#include \n\tvec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNVcc = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\tvec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );\n\t\toutgoingLight = outgoingLight * ( 1.0 - clearcoat * Fcc ) + clearcoatSpecular * clearcoat;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshphysical_vert = "#define STANDARD\nvarying vec3 vViewPosition;\n#ifdef USE_TRANSMISSION\n\tvarying vec3 vWorldPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition.xyz;\n#endif\n}"; var meshtoon_frag = "#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshtoon_vert = "#define TOON\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n}"; var points_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var points_vert = "uniform float size;\nuniform float scale;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n}"; var shadow_frag = "uniform vec3 color;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include \n\t#include \n\t#include \n}"; var shadow_vert = "#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var sprite_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n}"; var sprite_vert = "uniform float rotation;\nuniform vec2 center;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\n\tvec2 scale;\n\tscale.x = length( vec3( modelMatrix[ 0 ].x, modelMatrix[ 0 ].y, modelMatrix[ 0 ].z ) );\n\tscale.y = length( vec3( modelMatrix[ 1 ].x, modelMatrix[ 1 ].y, modelMatrix[ 1 ].z ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include \n\t#include \n\t#include \n}"; const ShaderChunk = { alphamap_fragment: alphamap_fragment, alphamap_pars_fragment: alphamap_pars_fragment, alphatest_fragment: alphatest_fragment, alphatest_pars_fragment: alphatest_pars_fragment, aomap_fragment: aomap_fragment, aomap_pars_fragment: aomap_pars_fragment, begin_vertex: begin_vertex, beginnormal_vertex: beginnormal_vertex, bsdfs: bsdfs, bumpmap_pars_fragment: bumpmap_pars_fragment, clipping_planes_fragment: clipping_planes_fragment, clipping_planes_pars_fragment: clipping_planes_pars_fragment, clipping_planes_pars_vertex: clipping_planes_pars_vertex, clipping_planes_vertex: clipping_planes_vertex, color_fragment: color_fragment, color_pars_fragment: color_pars_fragment, color_pars_vertex: color_pars_vertex, color_vertex: color_vertex, common: common, cube_uv_reflection_fragment: cube_uv_reflection_fragment, defaultnormal_vertex: defaultnormal_vertex, displacementmap_pars_vertex: displacementmap_pars_vertex, displacementmap_vertex: displacementmap_vertex, emissivemap_fragment: emissivemap_fragment, emissivemap_pars_fragment: emissivemap_pars_fragment, encodings_fragment: encodings_fragment, encodings_pars_fragment: encodings_pars_fragment, envmap_fragment: envmap_fragment, envmap_common_pars_fragment: envmap_common_pars_fragment, envmap_pars_fragment: envmap_pars_fragment, envmap_pars_vertex: envmap_pars_vertex, envmap_physical_pars_fragment: envmap_physical_pars_fragment, envmap_vertex: envmap_vertex, fog_vertex: fog_vertex, fog_pars_vertex: fog_pars_vertex, fog_fragment: fog_fragment, fog_pars_fragment: fog_pars_fragment, gradientmap_pars_fragment: gradientmap_pars_fragment, lightmap_fragment: lightmap_fragment, lightmap_pars_fragment: lightmap_pars_fragment, lights_lambert_vertex: lights_lambert_vertex, lights_pars_begin: lights_pars_begin, lights_toon_fragment: lights_toon_fragment, lights_toon_pars_fragment: lights_toon_pars_fragment, lights_phong_fragment: lights_phong_fragment, lights_phong_pars_fragment: lights_phong_pars_fragment, lights_physical_fragment: lights_physical_fragment, lights_physical_pars_fragment: lights_physical_pars_fragment, lights_fragment_begin: lights_fragment_begin, lights_fragment_maps: lights_fragment_maps, lights_fragment_end: lights_fragment_end, logdepthbuf_fragment: logdepthbuf_fragment, logdepthbuf_pars_fragment: logdepthbuf_pars_fragment, logdepthbuf_pars_vertex: logdepthbuf_pars_vertex, logdepthbuf_vertex: logdepthbuf_vertex, map_fragment: map_fragment, map_pars_fragment: map_pars_fragment, map_particle_fragment: map_particle_fragment, map_particle_pars_fragment: map_particle_pars_fragment, metalnessmap_fragment: metalnessmap_fragment, metalnessmap_pars_fragment: metalnessmap_pars_fragment, morphnormal_vertex: morphnormal_vertex, morphtarget_pars_vertex: morphtarget_pars_vertex, morphtarget_vertex: morphtarget_vertex, normal_fragment_begin: normal_fragment_begin, normal_fragment_maps: normal_fragment_maps, normal_pars_fragment: normal_pars_fragment, normal_pars_vertex: normal_pars_vertex, normal_vertex: normal_vertex, normalmap_pars_fragment: normalmap_pars_fragment, clearcoat_normal_fragment_begin: clearcoat_normal_fragment_begin, clearcoat_normal_fragment_maps: clearcoat_normal_fragment_maps, clearcoat_pars_fragment: clearcoat_pars_fragment, output_fragment: output_fragment, packing: packing, premultiplied_alpha_fragment: premultiplied_alpha_fragment, project_vertex: project_vertex, dithering_fragment: dithering_fragment, dithering_pars_fragment: dithering_pars_fragment, roughnessmap_fragment: roughnessmap_fragment, roughnessmap_pars_fragment: roughnessmap_pars_fragment, shadowmap_pars_fragment: shadowmap_pars_fragment, shadowmap_pars_vertex: shadowmap_pars_vertex, shadowmap_vertex: shadowmap_vertex, shadowmask_pars_fragment: shadowmask_pars_fragment, skinbase_vertex: skinbase_vertex, skinning_pars_vertex: skinning_pars_vertex, skinning_vertex: skinning_vertex, skinnormal_vertex: skinnormal_vertex, specularmap_fragment: specularmap_fragment, specularmap_pars_fragment: specularmap_pars_fragment, tonemapping_fragment: tonemapping_fragment, tonemapping_pars_fragment: tonemapping_pars_fragment, transmission_fragment: transmission_fragment, transmission_pars_fragment: transmission_pars_fragment, uv_pars_fragment: uv_pars_fragment, uv_pars_vertex: uv_pars_vertex, uv_vertex: uv_vertex, uv2_pars_fragment: uv2_pars_fragment, uv2_pars_vertex: uv2_pars_vertex, uv2_vertex: uv2_vertex, worldpos_vertex: worldpos_vertex, background_frag: background_frag, background_vert: background_vert, cube_frag: cube_frag, cube_vert: cube_vert, depth_frag: depth_frag, depth_vert: depth_vert, distanceRGBA_frag: distanceRGBA_frag, distanceRGBA_vert: distanceRGBA_vert, equirect_frag: equirect_frag, equirect_vert: equirect_vert, linedashed_frag: linedashed_frag, linedashed_vert: linedashed_vert, meshbasic_frag: meshbasic_frag, meshbasic_vert: meshbasic_vert, meshlambert_frag: meshlambert_frag, meshlambert_vert: meshlambert_vert, meshmatcap_frag: meshmatcap_frag, meshmatcap_vert: meshmatcap_vert, meshnormal_frag: meshnormal_frag, meshnormal_vert: meshnormal_vert, meshphong_frag: meshphong_frag, meshphong_vert: meshphong_vert, meshphysical_frag: meshphysical_frag, meshphysical_vert: meshphysical_vert, meshtoon_frag: meshtoon_frag, meshtoon_vert: meshtoon_vert, points_frag: points_frag, points_vert: points_vert, shadow_frag: shadow_frag, shadow_vert: shadow_vert, sprite_frag: sprite_frag, sprite_vert: sprite_vert }; /** * Uniforms library for shared webgl shaders */ const UniformsLib = { common: { diffuse: { value: new Color( 0xffffff ) }, opacity: { value: 1.0 }, map: { value: null }, uvTransform: { value: new Matrix3() }, uv2Transform: { value: new Matrix3() }, alphaMap: { value: null }, alphaTest: { value: 0 } }, specularmap: { specularMap: { value: null }, }, envmap: { envMap: { value: null }, flipEnvMap: { value: - 1 }, reflectivity: { value: 1.0 }, // basic, lambert, phong ior: { value: 1.5 }, // standard, physical refractionRatio: { value: 0.98 }, maxMipLevel: { value: 0 } }, aomap: { aoMap: { value: null }, aoMapIntensity: { value: 1 } }, lightmap: { lightMap: { value: null }, lightMapIntensity: { value: 1 } }, emissivemap: { emissiveMap: { value: null } }, bumpmap: { bumpMap: { value: null }, bumpScale: { value: 1 } }, normalmap: { normalMap: { value: null }, normalScale: { value: new Vector2( 1, 1 ) } }, displacementmap: { displacementMap: { value: null }, displacementScale: { value: 1 }, displacementBias: { value: 0 } }, roughnessmap: { roughnessMap: { value: null } }, metalnessmap: { metalnessMap: { value: null } }, gradientmap: { gradientMap: { value: null } }, fog: { fogDensity: { value: 0.00025 }, fogNear: { value: 1 }, fogFar: { value: 2000 }, fogColor: { value: new Color( 0xffffff ) } }, lights: { ambientLightColor: { value: [] }, lightProbe: { value: [] }, directionalLights: { value: [], properties: { direction: {}, color: {} } }, directionalLightShadows: { value: [], properties: { shadowBias: {}, shadowNormalBias: {}, shadowRadius: {}, shadowMapSize: {} } }, directionalShadowMap: { value: [] }, directionalShadowMatrix: { value: [] }, spotLights: { value: [], properties: { color: {}, position: {}, direction: {}, distance: {}, coneCos: {}, penumbraCos: {}, decay: {} } }, spotLightShadows: { value: [], properties: { shadowBias: {}, shadowNormalBias: {}, shadowRadius: {}, shadowMapSize: {} } }, spotShadowMap: { value: [] }, spotShadowMatrix: { value: [] }, pointLights: { value: [], properties: { color: {}, position: {}, decay: {}, distance: {} } }, pointLightShadows: { value: [], properties: { shadowBias: {}, shadowNormalBias: {}, shadowRadius: {}, shadowMapSize: {}, shadowCameraNear: {}, shadowCameraFar: {} } }, pointShadowMap: { value: [] }, pointShadowMatrix: { value: [] }, hemisphereLights: { value: [], properties: { direction: {}, skyColor: {}, groundColor: {} } }, // TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src rectAreaLights: { value: [], properties: { color: {}, position: {}, width: {}, height: {} } }, ltc_1: { value: null }, ltc_2: { value: null } }, points: { diffuse: { value: new Color( 0xffffff ) }, opacity: { value: 1.0 }, size: { value: 1.0 }, scale: { value: 1.0 }, map: { value: null }, alphaMap: { value: null }, alphaTest: { value: 0 }, uvTransform: { value: new Matrix3() } }, sprite: { diffuse: { value: new Color( 0xffffff ) }, opacity: { value: 1.0 }, center: { value: new Vector2( 0.5, 0.5 ) }, rotation: { value: 0.0 }, map: { value: null }, alphaMap: { value: null }, alphaTest: { value: 0 }, uvTransform: { value: new Matrix3() } } }; const ShaderLib = { basic: { uniforms: mergeUniforms( [ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.fog ] ), vertexShader: ShaderChunk.meshbasic_vert, fragmentShader: ShaderChunk.meshbasic_frag }, lambert: { uniforms: mergeUniforms( [ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color( 0x000000 ) } } ] ), vertexShader: ShaderChunk.meshlambert_vert, fragmentShader: ShaderChunk.meshlambert_frag }, phong: { uniforms: mergeUniforms( [ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color( 0x000000 ) }, specular: { value: new Color( 0x111111 ) }, shininess: { value: 30 } } ] ), vertexShader: ShaderChunk.meshphong_vert, fragmentShader: ShaderChunk.meshphong_frag }, standard: { uniforms: mergeUniforms( [ UniformsLib.common, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.roughnessmap, UniformsLib.metalnessmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color( 0x000000 ) }, roughness: { value: 1.0 }, metalness: { value: 0.0 }, envMapIntensity: { value: 1 } // temporary } ] ), vertexShader: ShaderChunk.meshphysical_vert, fragmentShader: ShaderChunk.meshphysical_frag }, toon: { uniforms: mergeUniforms( [ UniformsLib.common, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.gradientmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color( 0x000000 ) } } ] ), vertexShader: ShaderChunk.meshtoon_vert, fragmentShader: ShaderChunk.meshtoon_frag }, matcap: { uniforms: mergeUniforms( [ UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, { matcap: { value: null } } ] ), vertexShader: ShaderChunk.meshmatcap_vert, fragmentShader: ShaderChunk.meshmatcap_frag }, points: { uniforms: mergeUniforms( [ UniformsLib.points, UniformsLib.fog ] ), vertexShader: ShaderChunk.points_vert, fragmentShader: ShaderChunk.points_frag }, dashed: { uniforms: mergeUniforms( [ UniformsLib.common, UniformsLib.fog, { scale: { value: 1 }, dashSize: { value: 1 }, totalSize: { value: 2 } } ] ), vertexShader: ShaderChunk.linedashed_vert, fragmentShader: ShaderChunk.linedashed_frag }, depth: { uniforms: mergeUniforms( [ UniformsLib.common, UniformsLib.displacementmap ] ), vertexShader: ShaderChunk.depth_vert, fragmentShader: ShaderChunk.depth_frag }, normal: { uniforms: mergeUniforms( [ UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, { opacity: { value: 1.0 } } ] ), vertexShader: ShaderChunk.meshnormal_vert, fragmentShader: ShaderChunk.meshnormal_frag }, sprite: { uniforms: mergeUniforms( [ UniformsLib.sprite, UniformsLib.fog ] ), vertexShader: ShaderChunk.sprite_vert, fragmentShader: ShaderChunk.sprite_frag }, background: { uniforms: { uvTransform: { value: new Matrix3() }, t2D: { value: null }, }, vertexShader: ShaderChunk.background_vert, fragmentShader: ShaderChunk.background_frag }, /* ------------------------------------------------------------------------- // Cube map shader ------------------------------------------------------------------------- */ cube: { uniforms: mergeUniforms( [ UniformsLib.envmap, { opacity: { value: 1.0 } } ] ), vertexShader: ShaderChunk.cube_vert, fragmentShader: ShaderChunk.cube_frag }, equirect: { uniforms: { tEquirect: { value: null }, }, vertexShader: ShaderChunk.equirect_vert, fragmentShader: ShaderChunk.equirect_frag }, distanceRGBA: { uniforms: mergeUniforms( [ UniformsLib.common, UniformsLib.displacementmap, { referencePosition: { value: new Vector3() }, nearDistance: { value: 1 }, farDistance: { value: 1000 } } ] ), vertexShader: ShaderChunk.distanceRGBA_vert, fragmentShader: ShaderChunk.distanceRGBA_frag }, shadow: { uniforms: mergeUniforms( [ UniformsLib.lights, UniformsLib.fog, { color: { value: new Color( 0x00000 ) }, opacity: { value: 1.0 } }, ] ), vertexShader: ShaderChunk.shadow_vert, fragmentShader: ShaderChunk.shadow_frag } }; ShaderLib.physical = { uniforms: mergeUniforms( [ ShaderLib.standard.uniforms, { clearcoat: { value: 0 }, clearcoatMap: { value: null }, clearcoatRoughness: { value: 0 }, clearcoatRoughnessMap: { value: null }, clearcoatNormalScale: { value: new Vector2( 1, 1 ) }, clearcoatNormalMap: { value: null }, sheenTint: { value: new Color( 0x000000 ) }, transmission: { value: 0 }, transmissionMap: { value: null }, transmissionSamplerSize: { value: new Vector2() }, transmissionSamplerMap: { value: null }, thickness: { value: 0 }, thicknessMap: { value: null }, attenuationDistance: { value: 0 }, attenuationTint: { value: new Color( 0x000000 ) }, specularIntensity: { value: 0 }, specularIntensityMap: { value: null }, specularTint: { value: new Color( 1, 1, 1 ) }, specularTintMap: { value: null }, } ] ), vertexShader: ShaderChunk.meshphysical_vert, fragmentShader: ShaderChunk.meshphysical_frag }; function WebGLBackground( renderer, cubemaps, state, objects, premultipliedAlpha ) { const clearColor = new Color( 0x000000 ); let clearAlpha = 0; let planeMesh; let boxMesh; let currentBackground = null; let currentBackgroundVersion = 0; let currentTonemapping = null; function render( renderList, scene ) { let forceClear = false; let background = scene.isScene === true ? scene.background : null; if ( background && background.isTexture ) { background = cubemaps.get( background ); } // Ignore background in AR // TODO: Reconsider this. const xr = renderer.xr; const session = xr.getSession && xr.getSession(); if ( session && session.environmentBlendMode === 'additive' ) { background = null; } if ( background === null ) { setClear( clearColor, clearAlpha ); } else if ( background && background.isColor ) { setClear( background, 1 ); forceClear = true; } if ( renderer.autoClear || forceClear ) { renderer.clear( renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil ); } if ( background && ( background.isCubeTexture || background.mapping === CubeUVReflectionMapping ) ) { if ( boxMesh === undefined ) { boxMesh = new Mesh( new BoxGeometry( 1, 1, 1 ), new ShaderMaterial( { name: 'BackgroundCubeMaterial', uniforms: cloneUniforms( ShaderLib.cube.uniforms ), vertexShader: ShaderLib.cube.vertexShader, fragmentShader: ShaderLib.cube.fragmentShader, side: BackSide, depthTest: false, depthWrite: false, fog: false } ) ); boxMesh.geometry.deleteAttribute( 'normal' ); boxMesh.geometry.deleteAttribute( 'uv' ); boxMesh.onBeforeRender = function ( renderer, scene, camera ) { this.matrixWorld.copyPosition( camera.matrixWorld ); }; // enable code injection for non-built-in material Object.defineProperty( boxMesh.material, 'envMap', { get: function () { return this.uniforms.envMap.value; } } ); objects.update( boxMesh ); } boxMesh.material.uniforms.envMap.value = background; boxMesh.material.uniforms.flipEnvMap.value = ( background.isCubeTexture && background.isRenderTargetTexture === false ) ? - 1 : 1; if ( currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping ) { boxMesh.material.needsUpdate = true; currentBackground = background; currentBackgroundVersion = background.version; currentTonemapping = renderer.toneMapping; } // push to the pre-sorted opaque render list renderList.unshift( boxMesh, boxMesh.geometry, boxMesh.material, 0, 0, null ); } else if ( background && background.isTexture ) { if ( planeMesh === undefined ) { planeMesh = new Mesh( new PlaneGeometry( 2, 2 ), new ShaderMaterial( { name: 'BackgroundMaterial', uniforms: cloneUniforms( ShaderLib.background.uniforms ), vertexShader: ShaderLib.background.vertexShader, fragmentShader: ShaderLib.background.fragmentShader, side: FrontSide, depthTest: false, depthWrite: false, fog: false } ) ); planeMesh.geometry.deleteAttribute( 'normal' ); // enable code injection for non-built-in material Object.defineProperty( planeMesh.material, 'map', { get: function () { return this.uniforms.t2D.value; } } ); objects.update( planeMesh ); } planeMesh.material.uniforms.t2D.value = background; if ( background.matrixAutoUpdate === true ) { background.updateMatrix(); } planeMesh.material.uniforms.uvTransform.value.copy( background.matrix ); if ( currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping ) { planeMesh.material.needsUpdate = true; currentBackground = background; currentBackgroundVersion = background.version; currentTonemapping = renderer.toneMapping; } // push to the pre-sorted opaque render list renderList.unshift( planeMesh, planeMesh.geometry, planeMesh.material, 0, 0, null ); } } function setClear( color, alpha ) { state.buffers.color.setClear( color.r, color.g, color.b, alpha, premultipliedAlpha ); } return { getClearColor: function () { return clearColor; }, setClearColor: function ( color, alpha = 1 ) { clearColor.set( color ); clearAlpha = alpha; setClear( clearColor, clearAlpha ); }, getClearAlpha: function () { return clearAlpha; }, setClearAlpha: function ( alpha ) { clearAlpha = alpha; setClear( clearColor, clearAlpha ); }, render: render }; } function WebGLBindingStates( gl, extensions, attributes, capabilities ) { const maxVertexAttributes = gl.getParameter( 34921 ); const extension = capabilities.isWebGL2 ? null : extensions.get( 'OES_vertex_array_object' ); const vaoAvailable = capabilities.isWebGL2 || extension !== null; const bindingStates = {}; const defaultState = createBindingState( null ); let currentState = defaultState; function setup( object, material, program, geometry, index ) { let updateBuffers = false; if ( vaoAvailable ) { const state = getBindingState( geometry, program, material ); if ( currentState !== state ) { currentState = state; bindVertexArrayObject( currentState.object ); } updateBuffers = needsUpdate( geometry, index ); if ( updateBuffers ) saveCache( geometry, index ); } else { const wireframe = ( material.wireframe === true ); if ( currentState.geometry !== geometry.id || currentState.program !== program.id || currentState.wireframe !== wireframe ) { currentState.geometry = geometry.id; currentState.program = program.id; currentState.wireframe = wireframe; updateBuffers = true; } } if ( object.isInstancedMesh === true ) { updateBuffers = true; } if ( index !== null ) { attributes.update( index, 34963 ); } if ( updateBuffers ) { setupVertexAttributes( object, material, program, geometry ); if ( index !== null ) { gl.bindBuffer( 34963, attributes.get( index ).buffer ); } } } function createVertexArrayObject() { if ( capabilities.isWebGL2 ) return gl.createVertexArray(); return extension.createVertexArrayOES(); } function bindVertexArrayObject( vao ) { if ( capabilities.isWebGL2 ) return gl.bindVertexArray( vao ); return extension.bindVertexArrayOES( vao ); } function deleteVertexArrayObject( vao ) { if ( capabilities.isWebGL2 ) return gl.deleteVertexArray( vao ); return extension.deleteVertexArrayOES( vao ); } function getBindingState( geometry, program, material ) { const wireframe = ( material.wireframe === true ); let programMap = bindingStates[ geometry.id ]; if ( programMap === undefined ) { programMap = {}; bindingStates[ geometry.id ] = programMap; } let stateMap = programMap[ program.id ]; if ( stateMap === undefined ) { stateMap = {}; programMap[ program.id ] = stateMap; } let state = stateMap[ wireframe ]; if ( state === undefined ) { state = createBindingState( createVertexArrayObject() ); stateMap[ wireframe ] = state; } return state; } function createBindingState( vao ) { const newAttributes = []; const enabledAttributes = []; const attributeDivisors = []; for ( let i = 0; i < maxVertexAttributes; i ++ ) { newAttributes[ i ] = 0; enabledAttributes[ i ] = 0; attributeDivisors[ i ] = 0; } return { // for backward compatibility on non-VAO support browser geometry: null, program: null, wireframe: false, newAttributes: newAttributes, enabledAttributes: enabledAttributes, attributeDivisors: attributeDivisors, object: vao, attributes: {}, index: null }; } function needsUpdate( geometry, index ) { const cachedAttributes = currentState.attributes; const geometryAttributes = geometry.attributes; let attributesNum = 0; for ( const key in geometryAttributes ) { const cachedAttribute = cachedAttributes[ key ]; const geometryAttribute = geometryAttributes[ key ]; if ( cachedAttribute === undefined ) return true; if ( cachedAttribute.attribute !== geometryAttribute ) return true; if ( cachedAttribute.data !== geometryAttribute.data ) return true; attributesNum ++; } if ( currentState.attributesNum !== attributesNum ) return true; if ( currentState.index !== index ) return true; return false; } function saveCache( geometry, index ) { const cache = {}; const attributes = geometry.attributes; let attributesNum = 0; for ( const key in attributes ) { const attribute = attributes[ key ]; const data = {}; data.attribute = attribute; if ( attribute.data ) { data.data = attribute.data; } cache[ key ] = data; attributesNum ++; } currentState.attributes = cache; currentState.attributesNum = attributesNum; currentState.index = index; } function initAttributes() { const newAttributes = currentState.newAttributes; for ( let i = 0, il = newAttributes.length; i < il; i ++ ) { newAttributes[ i ] = 0; } } function enableAttribute( attribute ) { enableAttributeAndDivisor( attribute, 0 ); } function enableAttributeAndDivisor( attribute, meshPerAttribute ) { const newAttributes = currentState.newAttributes; const enabledAttributes = currentState.enabledAttributes; const attributeDivisors = currentState.attributeDivisors; newAttributes[ attribute ] = 1; if ( enabledAttributes[ attribute ] === 0 ) { gl.enableVertexAttribArray( attribute ); enabledAttributes[ attribute ] = 1; } if ( attributeDivisors[ attribute ] !== meshPerAttribute ) { const extension = capabilities.isWebGL2 ? gl : extensions.get( 'ANGLE_instanced_arrays' ); extension[ capabilities.isWebGL2 ? 'vertexAttribDivisor' : 'vertexAttribDivisorANGLE' ]( attribute, meshPerAttribute ); attributeDivisors[ attribute ] = meshPerAttribute; } } function disableUnusedAttributes() { const newAttributes = currentState.newAttributes; const enabledAttributes = currentState.enabledAttributes; for ( let i = 0, il = enabledAttributes.length; i < il; i ++ ) { if ( enabledAttributes[ i ] !== newAttributes[ i ] ) { gl.disableVertexAttribArray( i ); enabledAttributes[ i ] = 0; } } } function vertexAttribPointer( index, size, type, normalized, stride, offset ) { if ( capabilities.isWebGL2 === true && ( type === 5124 || type === 5125 ) ) { gl.vertexAttribIPointer( index, size, type, stride, offset ); } else { gl.vertexAttribPointer( index, size, type, normalized, stride, offset ); } } function setupVertexAttributes( object, material, program, geometry ) { if ( capabilities.isWebGL2 === false && ( object.isInstancedMesh || geometry.isInstancedBufferGeometry ) ) { if ( extensions.get( 'ANGLE_instanced_arrays' ) === null ) return; } initAttributes(); const geometryAttributes = geometry.attributes; const programAttributes = program.getAttributes(); const materialDefaultAttributeValues = material.defaultAttributeValues; for ( const name in programAttributes ) { const programAttribute = programAttributes[ name ]; if ( programAttribute.location >= 0 ) { let geometryAttribute = geometryAttributes[ name ]; if ( geometryAttribute === undefined ) { if ( name === 'instanceMatrix' && object.instanceMatrix ) geometryAttribute = object.instanceMatrix; if ( name === 'instanceColor' && object.instanceColor ) geometryAttribute = object.instanceColor; } if ( geometryAttribute !== undefined ) { const normalized = geometryAttribute.normalized; const size = geometryAttribute.itemSize; const attribute = attributes.get( geometryAttribute ); // TODO Attribute may not be available on context restore if ( attribute === undefined ) continue; const buffer = attribute.buffer; const type = attribute.type; const bytesPerElement = attribute.bytesPerElement; if ( geometryAttribute.isInterleavedBufferAttribute ) { const data = geometryAttribute.data; const stride = data.stride; const offset = geometryAttribute.offset; if ( data && data.isInstancedInterleavedBuffer ) { for ( let i = 0; i < programAttribute.locationSize; i ++ ) { enableAttributeAndDivisor( programAttribute.location + i, data.meshPerAttribute ); } if ( object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined ) { geometry._maxInstanceCount = data.meshPerAttribute * data.count; } } else { for ( let i = 0; i < programAttribute.locationSize; i ++ ) { enableAttribute( programAttribute.location + i ); } } gl.bindBuffer( 34962, buffer ); for ( let i = 0; i < programAttribute.locationSize; i ++ ) { vertexAttribPointer( programAttribute.location + i, size / programAttribute.locationSize, type, normalized, stride * bytesPerElement, ( offset + ( size / programAttribute.locationSize ) * i ) * bytesPerElement ); } } else { if ( geometryAttribute.isInstancedBufferAttribute ) { for ( let i = 0; i < programAttribute.locationSize; i ++ ) { enableAttributeAndDivisor( programAttribute.location + i, geometryAttribute.meshPerAttribute ); } if ( object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined ) { geometry._maxInstanceCount = geometryAttribute.meshPerAttribute * geometryAttribute.count; } } else { for ( let i = 0; i < programAttribute.locationSize; i ++ ) { enableAttribute( programAttribute.location + i ); } } gl.bindBuffer( 34962, buffer ); for ( let i = 0; i < programAttribute.locationSize; i ++ ) { vertexAttribPointer( programAttribute.location + i, size / programAttribute.locationSize, type, normalized, size * bytesPerElement, ( size / programAttribute.locationSize ) * i * bytesPerElement ); } } } else if ( materialDefaultAttributeValues !== undefined ) { const value = materialDefaultAttributeValues[ name ]; if ( value !== undefined ) { switch ( value.length ) { case 2: gl.vertexAttrib2fv( programAttribute.location, value ); break; case 3: gl.vertexAttrib3fv( programAttribute.location, value ); break; case 4: gl.vertexAttrib4fv( programAttribute.location, value ); break; default: gl.vertexAttrib1fv( programAttribute.location, value ); } } } } } disableUnusedAttributes(); } function dispose() { reset(); for ( const geometryId in bindingStates ) { const programMap = bindingStates[ geometryId ]; for ( const programId in programMap ) { const stateMap = programMap[ programId ]; for ( const wireframe in stateMap ) { deleteVertexArrayObject( stateMap[ wireframe ].object ); delete stateMap[ wireframe ]; } delete programMap[ programId ]; } delete bindingStates[ geometryId ]; } } function releaseStatesOfGeometry( geometry ) { if ( bindingStates[ geometry.id ] === undefined ) return; const programMap = bindingStates[ geometry.id ]; for ( const programId in programMap ) { const stateMap = programMap[ programId ]; for ( const wireframe in stateMap ) { deleteVertexArrayObject( stateMap[ wireframe ].object ); delete stateMap[ wireframe ]; } delete programMap[ programId ]; } delete bindingStates[ geometry.id ]; } function releaseStatesOfProgram( program ) { for ( const geometryId in bindingStates ) { const programMap = bindingStates[ geometryId ]; if ( programMap[ program.id ] === undefined ) continue; const stateMap = programMap[ program.id ]; for ( const wireframe in stateMap ) { deleteVertexArrayObject( stateMap[ wireframe ].object ); delete stateMap[ wireframe ]; } delete programMap[ program.id ]; } } function reset() { resetDefaultState(); if ( currentState === defaultState ) return; currentState = defaultState; bindVertexArrayObject( currentState.object ); } // for backward-compatilibity function resetDefaultState() { defaultState.geometry = null; defaultState.program = null; defaultState.wireframe = false; } return { setup: setup, reset: reset, resetDefaultState: resetDefaultState, dispose: dispose, releaseStatesOfGeometry: releaseStatesOfGeometry, releaseStatesOfProgram: releaseStatesOfProgram, initAttributes: initAttributes, enableAttribute: enableAttribute, disableUnusedAttributes: disableUnusedAttributes }; } function WebGLBufferRenderer( gl, extensions, info, capabilities ) { const isWebGL2 = capabilities.isWebGL2; let mode; function setMode( value ) { mode = value; } function render( start, count ) { gl.drawArrays( mode, start, count ); info.update( count, mode, 1 ); } function renderInstances( start, count, primcount ) { if ( primcount === 0 ) return; let extension, methodName; if ( isWebGL2 ) { extension = gl; methodName = 'drawArraysInstanced'; } else { extension = extensions.get( 'ANGLE_instanced_arrays' ); methodName = 'drawArraysInstancedANGLE'; if ( extension === null ) { console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); return; } } extension[ methodName ]( mode, start, count, primcount ); info.update( count, mode, primcount ); } // this.setMode = setMode; this.render = render; this.renderInstances = renderInstances; } function WebGLCapabilities( gl, extensions, parameters ) { let maxAnisotropy; function getMaxAnisotropy() { if ( maxAnisotropy !== undefined ) return maxAnisotropy; if ( extensions.has( 'EXT_texture_filter_anisotropic' ) === true ) { const extension = extensions.get( 'EXT_texture_filter_anisotropic' ); maxAnisotropy = gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT ); } else { maxAnisotropy = 0; } return maxAnisotropy; } function getMaxPrecision( precision ) { if ( precision === 'highp' ) { if ( gl.getShaderPrecisionFormat( 35633, 36338 ).precision > 0 && gl.getShaderPrecisionFormat( 35632, 36338 ).precision > 0 ) { return 'highp'; } precision = 'mediump'; } if ( precision === 'mediump' ) { if ( gl.getShaderPrecisionFormat( 35633, 36337 ).precision > 0 && gl.getShaderPrecisionFormat( 35632, 36337 ).precision > 0 ) { return 'mediump'; } } return 'lowp'; } /* eslint-disable no-undef */ const isWebGL2 = ( typeof WebGL2RenderingContext !== 'undefined' && gl instanceof WebGL2RenderingContext ) || ( typeof WebGL2ComputeRenderingContext !== 'undefined' && gl instanceof WebGL2ComputeRenderingContext ); /* eslint-enable no-undef */ let precision = parameters.precision !== undefined ? parameters.precision : 'highp'; const maxPrecision = getMaxPrecision( precision ); if ( maxPrecision !== precision ) { console.warn( 'THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.' ); precision = maxPrecision; } const drawBuffers = isWebGL2 || extensions.has( 'WEBGL_draw_buffers' ); const logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true; const maxTextures = gl.getParameter( 34930 ); const maxVertexTextures = gl.getParameter( 35660 ); const maxTextureSize = gl.getParameter( 3379 ); const maxCubemapSize = gl.getParameter( 34076 ); const maxAttributes = gl.getParameter( 34921 ); const maxVertexUniforms = gl.getParameter( 36347 ); const maxVaryings = gl.getParameter( 36348 ); const maxFragmentUniforms = gl.getParameter( 36349 ); const vertexTextures = maxVertexTextures > 0; const floatFragmentTextures = isWebGL2 || extensions.has( 'OES_texture_float' ); const floatVertexTextures = vertexTextures && floatFragmentTextures; const maxSamples = isWebGL2 ? gl.getParameter( 36183 ) : 0; return { isWebGL2: isWebGL2, drawBuffers: drawBuffers, getMaxAnisotropy: getMaxAnisotropy, getMaxPrecision: getMaxPrecision, precision: precision, logarithmicDepthBuffer: logarithmicDepthBuffer, maxTextures: maxTextures, maxVertexTextures: maxVertexTextures, maxTextureSize: maxTextureSize, maxCubemapSize: maxCubemapSize, maxAttributes: maxAttributes, maxVertexUniforms: maxVertexUniforms, maxVaryings: maxVaryings, maxFragmentUniforms: maxFragmentUniforms, vertexTextures: vertexTextures, floatFragmentTextures: floatFragmentTextures, floatVertexTextures: floatVertexTextures, maxSamples: maxSamples }; } function WebGLClipping( properties ) { const scope = this; let globalState = null, numGlobalPlanes = 0, localClippingEnabled = false, renderingShadows = false; const plane = new Plane(), viewNormalMatrix = new Matrix3(), uniform = { value: null, needsUpdate: false }; this.uniform = uniform; this.numPlanes = 0; this.numIntersection = 0; this.init = function ( planes, enableLocalClipping, camera ) { const enabled = planes.length !== 0 || enableLocalClipping || // enable state of previous frame - the clipping code has to // run another frame in order to reset the state: numGlobalPlanes !== 0 || localClippingEnabled; localClippingEnabled = enableLocalClipping; globalState = projectPlanes( planes, camera, 0 ); numGlobalPlanes = planes.length; return enabled; }; this.beginShadows = function () { renderingShadows = true; projectPlanes( null ); }; this.endShadows = function () { renderingShadows = false; resetGlobalState(); }; this.setState = function ( material, camera, useCache ) { const planes = material.clippingPlanes, clipIntersection = material.clipIntersection, clipShadows = material.clipShadows; const materialProperties = properties.get( material ); if ( ! localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && ! clipShadows ) { // there's no local clipping if ( renderingShadows ) { // there's no global clipping projectPlanes( null ); } else { resetGlobalState(); } } else { const nGlobal = renderingShadows ? 0 : numGlobalPlanes, lGlobal = nGlobal * 4; let dstArray = materialProperties.clippingState || null; uniform.value = dstArray; // ensure unique state dstArray = projectPlanes( planes, camera, lGlobal, useCache ); for ( let i = 0; i !== lGlobal; ++ i ) { dstArray[ i ] = globalState[ i ]; } materialProperties.clippingState = dstArray; this.numIntersection = clipIntersection ? this.numPlanes : 0; this.numPlanes += nGlobal; } }; function resetGlobalState() { if ( uniform.value !== globalState ) { uniform.value = globalState; uniform.needsUpdate = numGlobalPlanes > 0; } scope.numPlanes = numGlobalPlanes; scope.numIntersection = 0; } function projectPlanes( planes, camera, dstOffset, skipTransform ) { const nPlanes = planes !== null ? planes.length : 0; let dstArray = null; if ( nPlanes !== 0 ) { dstArray = uniform.value; if ( skipTransform !== true || dstArray === null ) { const flatSize = dstOffset + nPlanes * 4, viewMatrix = camera.matrixWorldInverse; viewNormalMatrix.getNormalMatrix( viewMatrix ); if ( dstArray === null || dstArray.length < flatSize ) { dstArray = new Float32Array( flatSize ); } for ( let i = 0, i4 = dstOffset; i !== nPlanes; ++ i, i4 += 4 ) { plane.copy( planes[ i ] ).applyMatrix4( viewMatrix, viewNormalMatrix ); plane.normal.toArray( dstArray, i4 ); dstArray[ i4 + 3 ] = plane.constant; } } uniform.value = dstArray; uniform.needsUpdate = true; } scope.numPlanes = nPlanes; scope.numIntersection = 0; return dstArray; } } function WebGLCubeMaps( renderer ) { let cubemaps = new WeakMap(); function mapTextureMapping( texture, mapping ) { if ( mapping === EquirectangularReflectionMapping ) { texture.mapping = CubeReflectionMapping; } else if ( mapping === EquirectangularRefractionMapping ) { texture.mapping = CubeRefractionMapping; } return texture; } function get( texture ) { if ( texture && texture.isTexture && texture.isRenderTargetTexture === false ) { const mapping = texture.mapping; if ( mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping ) { if ( cubemaps.has( texture ) ) { const cubemap = cubemaps.get( texture ).texture; return mapTextureMapping( cubemap, texture.mapping ); } else { const image = texture.image; if ( image && image.height > 0 ) { const currentRenderTarget = renderer.getRenderTarget(); const renderTarget = new WebGLCubeRenderTarget( image.height / 2 ); renderTarget.fromEquirectangularTexture( renderer, texture ); cubemaps.set( texture, renderTarget ); renderer.setRenderTarget( currentRenderTarget ); texture.addEventListener( 'dispose', onTextureDispose ); return mapTextureMapping( renderTarget.texture, texture.mapping ); } else { // image not yet ready. try the conversion next frame return null; } } } } return texture; } function onTextureDispose( event ) { const texture = event.target; texture.removeEventListener( 'dispose', onTextureDispose ); const cubemap = cubemaps.get( texture ); if ( cubemap !== undefined ) { cubemaps.delete( texture ); cubemap.dispose(); } } function dispose() { cubemaps = new WeakMap(); } return { get: get, dispose: dispose }; } class OrthographicCamera extends Camera { constructor( left = - 1, right = 1, top = 1, bottom = - 1, near = 0.1, far = 2000 ) { super(); this.type = 'OrthographicCamera'; this.zoom = 1; this.view = null; this.left = left; this.right = right; this.top = top; this.bottom = bottom; this.near = near; this.far = far; this.updateProjectionMatrix(); } copy( source, recursive ) { super.copy( source, recursive ); this.left = source.left; this.right = source.right; this.top = source.top; this.bottom = source.bottom; this.near = source.near; this.far = source.far; this.zoom = source.zoom; this.view = source.view === null ? null : Object.assign( {}, source.view ); return this; } setViewOffset( fullWidth, fullHeight, x, y, width, height ) { if ( this.view === null ) { this.view = { enabled: true, fullWidth: 1, fullHeight: 1, offsetX: 0, offsetY: 0, width: 1, height: 1 }; } this.view.enabled = true; this.view.fullWidth = fullWidth; this.view.fullHeight = fullHeight; this.view.offsetX = x; this.view.offsetY = y; this.view.width = width; this.view.height = height; this.updateProjectionMatrix(); } clearViewOffset() { if ( this.view !== null ) { this.view.enabled = false; } this.updateProjectionMatrix(); } updateProjectionMatrix() { const dx = ( this.right - this.left ) / ( 2 * this.zoom ); const dy = ( this.top - this.bottom ) / ( 2 * this.zoom ); const cx = ( this.right + this.left ) / 2; const cy = ( this.top + this.bottom ) / 2; let left = cx - dx; let right = cx + dx; let top = cy + dy; let bottom = cy - dy; if ( this.view !== null && this.view.enabled ) { const scaleW = ( this.right - this.left ) / this.view.fullWidth / this.zoom; const scaleH = ( this.top - this.bottom ) / this.view.fullHeight / this.zoom; left += scaleW * this.view.offsetX; right = left + scaleW * this.view.width; top -= scaleH * this.view.offsetY; bottom = top - scaleH * this.view.height; } this.projectionMatrix.makeOrthographic( left, right, top, bottom, this.near, this.far ); this.projectionMatrixInverse.copy( this.projectionMatrix ).invert(); } toJSON( meta ) { const data = super.toJSON( meta ); data.object.zoom = this.zoom; data.object.left = this.left; data.object.right = this.right; data.object.top = this.top; data.object.bottom = this.bottom; data.object.near = this.near; data.object.far = this.far; if ( this.view !== null ) data.object.view = Object.assign( {}, this.view ); return data; } } OrthographicCamera.prototype.isOrthographicCamera = true; class RawShaderMaterial extends ShaderMaterial { constructor( parameters ) { super( parameters ); this.type = 'RawShaderMaterial'; } } RawShaderMaterial.prototype.isRawShaderMaterial = true; const LOD_MIN = 4; const LOD_MAX = 8; const SIZE_MAX = Math.pow( 2, LOD_MAX ); // The standard deviations (radians) associated with the extra mips. These are // chosen to approximate a Trowbridge-Reitz distribution function times the // geometric shadowing function. These sigma values squared must match the // variance #defines in cube_uv_reflection_fragment.glsl.js. const EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ]; const TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length; // The maximum length of the blur for loop. Smaller sigmas will use fewer // samples and exit early, but not recompile the shader. const MAX_SAMPLES = 20; const ENCODINGS = { [ LinearEncoding ]: 0, [ sRGBEncoding ]: 1, [ RGBEEncoding ]: 2, [ RGBM7Encoding ]: 3, [ RGBM16Encoding ]: 4, [ RGBDEncoding ]: 5, [ GammaEncoding ]: 6 }; const _flatCamera = /*@__PURE__*/ new OrthographicCamera(); const { _lodPlanes, _sizeLods, _sigmas } = /*@__PURE__*/ _createPlanes(); const _clearColor = /*@__PURE__*/ new Color(); let _oldTarget = null; // Golden Ratio const PHI = ( 1 + Math.sqrt( 5 ) ) / 2; const INV_PHI = 1 / PHI; // Vertices of a dodecahedron (except the opposites, which represent the // same axis), used as axis directions evenly spread on a sphere. const _axisDirections = [ /*@__PURE__*/ new Vector3( 1, 1, 1 ), /*@__PURE__*/ new Vector3( - 1, 1, 1 ), /*@__PURE__*/ new Vector3( 1, 1, - 1 ), /*@__PURE__*/ new Vector3( - 1, 1, - 1 ), /*@__PURE__*/ new Vector3( 0, PHI, INV_PHI ), /*@__PURE__*/ new Vector3( 0, PHI, - INV_PHI ), /*@__PURE__*/ new Vector3( INV_PHI, 0, PHI ), /*@__PURE__*/ new Vector3( - INV_PHI, 0, PHI ), /*@__PURE__*/ new Vector3( PHI, INV_PHI, 0 ), /*@__PURE__*/ new Vector3( - PHI, INV_PHI, 0 ) ]; /** * This class generates a Prefiltered, Mipmapped Radiance Environment Map * (PMREM) from a cubeMap environment texture. This allows different levels of * blur to be quickly accessed based on material roughness. It is packed into a * special CubeUV format that allows us to perform custom interpolation so that * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap * chain, it only goes down to the LOD_MIN level (above), and then creates extra * even more filtered 'mips' at the same LOD_MIN resolution, associated with * higher roughness levels. In this way we maintain resolution to smoothly * interpolate diffuse lighting while limiting sampling computation. * * Paper: Fast, Accurate Image-Based Lighting * https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view */ class PMREMGenerator { constructor( renderer ) { this._renderer = renderer; this._pingPongRenderTarget = null; this._blurMaterial = _getBlurShader( MAX_SAMPLES ); this._equirectShader = null; this._cubemapShader = null; this._compileMaterial( this._blurMaterial ); } /** * Generates a PMREM from a supplied Scene, which can be faster than using an * image if networking bandwidth is low. Optional sigma specifies a blur radius * in radians to be applied to the scene before PMREM generation. Optional near * and far planes ensure the scene is rendered in its entirety (the cubeCamera * is placed at the origin). */ fromScene( scene, sigma = 0, near = 0.1, far = 100 ) { _oldTarget = this._renderer.getRenderTarget(); const cubeUVRenderTarget = this._allocateTargets(); this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget ); if ( sigma > 0 ) { this._blur( cubeUVRenderTarget, 0, 0, sigma ); } this._applyPMREM( cubeUVRenderTarget ); this._cleanup( cubeUVRenderTarget ); return cubeUVRenderTarget; } /** * Generates a PMREM from an equirectangular texture, which can be either LDR * (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512), * as this matches best with the 256 x 256 cubemap output. */ fromEquirectangular( equirectangular ) { return this._fromTexture( equirectangular ); } /** * Generates a PMREM from an cubemap texture, which can be either LDR * (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256, * as this matches best with the 256 x 256 cubemap output. */ fromCubemap( cubemap ) { return this._fromTexture( cubemap ); } /** * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during * your texture's network fetch for increased concurrency. */ compileCubemapShader() { if ( this._cubemapShader === null ) { this._cubemapShader = _getCubemapShader(); this._compileMaterial( this._cubemapShader ); } } /** * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during * your texture's network fetch for increased concurrency. */ compileEquirectangularShader() { if ( this._equirectShader === null ) { this._equirectShader = _getEquirectShader(); this._compileMaterial( this._equirectShader ); } } /** * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class, * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on * one of them will cause any others to also become unusable. */ dispose() { this._blurMaterial.dispose(); if ( this._cubemapShader !== null ) this._cubemapShader.dispose(); if ( this._equirectShader !== null ) this._equirectShader.dispose(); for ( let i = 0; i < _lodPlanes.length; i ++ ) { _lodPlanes[ i ].dispose(); } } // private interface _cleanup( outputTarget ) { this._pingPongRenderTarget.dispose(); this._renderer.setRenderTarget( _oldTarget ); outputTarget.scissorTest = false; _setViewport( outputTarget, 0, 0, outputTarget.width, outputTarget.height ); } _fromTexture( texture ) { _oldTarget = this._renderer.getRenderTarget(); const cubeUVRenderTarget = this._allocateTargets( texture ); this._textureToCubeUV( texture, cubeUVRenderTarget ); this._applyPMREM( cubeUVRenderTarget ); this._cleanup( cubeUVRenderTarget ); return cubeUVRenderTarget; } _allocateTargets( texture ) { // warning: null texture is valid const params = { magFilter: NearestFilter, minFilter: NearestFilter, generateMipmaps: false, type: UnsignedByteType, format: RGBEFormat, encoding: _isLDR( texture ) ? texture.encoding : RGBEEncoding, depthBuffer: false }; const cubeUVRenderTarget = _createRenderTarget( params ); cubeUVRenderTarget.depthBuffer = texture ? false : true; this._pingPongRenderTarget = _createRenderTarget( params ); return cubeUVRenderTarget; } _compileMaterial( material ) { const tmpMesh = new Mesh( _lodPlanes[ 0 ], material ); this._renderer.compile( tmpMesh, _flatCamera ); } _sceneToCubeUV( scene, near, far, cubeUVRenderTarget ) { const fov = 90; const aspect = 1; const cubeCamera = new PerspectiveCamera( fov, aspect, near, far ); const upSign = [ 1, - 1, 1, 1, 1, 1 ]; const forwardSign = [ 1, 1, 1, - 1, - 1, - 1 ]; const renderer = this._renderer; const originalAutoClear = renderer.autoClear; const outputEncoding = renderer.outputEncoding; const toneMapping = renderer.toneMapping; renderer.getClearColor( _clearColor ); renderer.toneMapping = NoToneMapping; renderer.outputEncoding = LinearEncoding; renderer.autoClear = false; const backgroundMaterial = new MeshBasicMaterial( { name: 'PMREM.Background', side: BackSide, depthWrite: false, depthTest: false, } ); const backgroundBox = new Mesh( new BoxGeometry(), backgroundMaterial ); let useSolidColor = false; const background = scene.background; if ( background ) { if ( background.isColor ) { backgroundMaterial.color.copy( background ); scene.background = null; useSolidColor = true; } } else { backgroundMaterial.color.copy( _clearColor ); useSolidColor = true; } for ( let i = 0; i < 6; i ++ ) { const col = i % 3; if ( col == 0 ) { cubeCamera.up.set( 0, upSign[ i ], 0 ); cubeCamera.lookAt( forwardSign[ i ], 0, 0 ); } else if ( col == 1 ) { cubeCamera.up.set( 0, 0, upSign[ i ] ); cubeCamera.lookAt( 0, forwardSign[ i ], 0 ); } else { cubeCamera.up.set( 0, upSign[ i ], 0 ); cubeCamera.lookAt( 0, 0, forwardSign[ i ] ); } _setViewport( cubeUVRenderTarget, col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX ); renderer.setRenderTarget( cubeUVRenderTarget ); if ( useSolidColor ) { renderer.render( backgroundBox, cubeCamera ); } renderer.render( scene, cubeCamera ); } backgroundBox.geometry.dispose(); backgroundBox.material.dispose(); renderer.toneMapping = toneMapping; renderer.outputEncoding = outputEncoding; renderer.autoClear = originalAutoClear; scene.background = background; } _textureToCubeUV( texture, cubeUVRenderTarget ) { const renderer = this._renderer; if ( texture.isCubeTexture ) { if ( this._cubemapShader == null ) { this._cubemapShader = _getCubemapShader(); } } else { if ( this._equirectShader == null ) { this._equirectShader = _getEquirectShader(); } } const material = texture.isCubeTexture ? this._cubemapShader : this._equirectShader; const mesh = new Mesh( _lodPlanes[ 0 ], material ); const uniforms = material.uniforms; uniforms[ 'envMap' ].value = texture; if ( ! texture.isCubeTexture ) { uniforms[ 'texelSize' ].value.set( 1.0 / texture.image.width, 1.0 / texture.image.height ); } uniforms[ 'inputEncoding' ].value = ENCODINGS[ texture.encoding ]; uniforms[ 'outputEncoding' ].value = ENCODINGS[ cubeUVRenderTarget.texture.encoding ]; _setViewport( cubeUVRenderTarget, 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX ); renderer.setRenderTarget( cubeUVRenderTarget ); renderer.render( mesh, _flatCamera ); } _applyPMREM( cubeUVRenderTarget ) { const renderer = this._renderer; const autoClear = renderer.autoClear; renderer.autoClear = false; for ( let i = 1; i < TOTAL_LODS; i ++ ) { const sigma = Math.sqrt( _sigmas[ i ] * _sigmas[ i ] - _sigmas[ i - 1 ] * _sigmas[ i - 1 ] ); const poleAxis = _axisDirections[ ( i - 1 ) % _axisDirections.length ]; this._blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis ); } renderer.autoClear = autoClear; } /** * This is a two-pass Gaussian blur for a cubemap. Normally this is done * vertically and horizontally, but this breaks down on a cube. Here we apply * the blur latitudinally (around the poles), and then longitudinally (towards * the poles) to approximate the orthogonally-separable blur. It is least * accurate at the poles, but still does a decent job. */ _blur( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) { const pingPongRenderTarget = this._pingPongRenderTarget; this._halfBlur( cubeUVRenderTarget, pingPongRenderTarget, lodIn, lodOut, sigma, 'latitudinal', poleAxis ); this._halfBlur( pingPongRenderTarget, cubeUVRenderTarget, lodOut, lodOut, sigma, 'longitudinal', poleAxis ); } _halfBlur( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) { const renderer = this._renderer; const blurMaterial = this._blurMaterial; if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) { console.error( 'blur direction must be either latitudinal or longitudinal!' ); } // Number of standard deviations at which to cut off the discrete approximation. const STANDARD_DEVIATIONS = 3; const blurMesh = new Mesh( _lodPlanes[ lodOut ], blurMaterial ); const blurUniforms = blurMaterial.uniforms; const pixels = _sizeLods[ lodIn ] - 1; const radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 ); const sigmaPixels = sigmaRadians / radiansPerPixel; const samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES; if ( samples > MAX_SAMPLES ) { console.warn( `sigmaRadians, ${ sigmaRadians}, is too large and will clip, as it requested ${ samples} samples when the maximum is set to ${MAX_SAMPLES}` ); } const weights = []; let sum = 0; for ( let i = 0; i < MAX_SAMPLES; ++ i ) { const x = i / sigmaPixels; const weight = Math.exp( - x * x / 2 ); weights.push( weight ); if ( i == 0 ) { sum += weight; } else if ( i < samples ) { sum += 2 * weight; } } for ( let i = 0; i < weights.length; i ++ ) { weights[ i ] = weights[ i ] / sum; } blurUniforms[ 'envMap' ].value = targetIn.texture; blurUniforms[ 'samples' ].value = samples; blurUniforms[ 'weights' ].value = weights; blurUniforms[ 'latitudinal' ].value = direction === 'latitudinal'; if ( poleAxis ) { blurUniforms[ 'poleAxis' ].value = poleAxis; } blurUniforms[ 'dTheta' ].value = radiansPerPixel; blurUniforms[ 'mipInt' ].value = LOD_MAX - lodIn; blurUniforms[ 'inputEncoding' ].value = ENCODINGS[ targetIn.texture.encoding ]; blurUniforms[ 'outputEncoding' ].value = ENCODINGS[ targetIn.texture.encoding ]; const outputSize = _sizeLods[ lodOut ]; const x = 3 * Math.max( 0, SIZE_MAX - 2 * outputSize ); const y = ( lodOut === 0 ? 0 : 2 * SIZE_MAX ) + 2 * outputSize * ( lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0 ); _setViewport( targetOut, x, y, 3 * outputSize, 2 * outputSize ); renderer.setRenderTarget( targetOut ); renderer.render( blurMesh, _flatCamera ); } } function _isLDR( texture ) { if ( texture === undefined || texture.type !== UnsignedByteType ) return false; return texture.encoding === LinearEncoding || texture.encoding === sRGBEncoding || texture.encoding === GammaEncoding; } function _createPlanes() { const _lodPlanes = []; const _sizeLods = []; const _sigmas = []; let lod = LOD_MAX; for ( let i = 0; i < TOTAL_LODS; i ++ ) { const sizeLod = Math.pow( 2, lod ); _sizeLods.push( sizeLod ); let sigma = 1.0 / sizeLod; if ( i > LOD_MAX - LOD_MIN ) { sigma = EXTRA_LOD_SIGMA[ i - LOD_MAX + LOD_MIN - 1 ]; } else if ( i == 0 ) { sigma = 0; } _sigmas.push( sigma ); const texelSize = 1.0 / ( sizeLod - 1 ); const min = - texelSize / 2; const max = 1 + texelSize / 2; const uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ]; const cubeFaces = 6; const vertices = 6; const positionSize = 3; const uvSize = 2; const faceIndexSize = 1; const position = new Float32Array( positionSize * vertices * cubeFaces ); const uv = new Float32Array( uvSize * vertices * cubeFaces ); const faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces ); for ( let face = 0; face < cubeFaces; face ++ ) { const x = ( face % 3 ) * 2 / 3 - 1; const y = face > 2 ? 0 : - 1; const coordinates = [ x, y, 0, x + 2 / 3, y, 0, x + 2 / 3, y + 1, 0, x, y, 0, x + 2 / 3, y + 1, 0, x, y + 1, 0 ]; position.set( coordinates, positionSize * vertices * face ); uv.set( uv1, uvSize * vertices * face ); const fill = [ face, face, face, face, face, face ]; faceIndex.set( fill, faceIndexSize * vertices * face ); } const planes = new BufferGeometry(); planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) ); planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) ); planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) ); _lodPlanes.push( planes ); if ( lod > LOD_MIN ) { lod --; } } return { _lodPlanes, _sizeLods, _sigmas }; } function _createRenderTarget( params ) { const cubeUVRenderTarget = new WebGLRenderTarget( 3 * SIZE_MAX, 3 * SIZE_MAX, params ); cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping; cubeUVRenderTarget.texture.name = 'PMREM.cubeUv'; cubeUVRenderTarget.scissorTest = true; return cubeUVRenderTarget; } function _setViewport( target, x, y, width, height ) { target.viewport.set( x, y, width, height ); target.scissor.set( x, y, width, height ); } function _getBlurShader( maxSamples ) { const weights = new Float32Array( maxSamples ); const poleAxis = new Vector3( 0, 1, 0 ); const shaderMaterial = new RawShaderMaterial( { name: 'SphericalGaussianBlur', defines: { 'n': maxSamples }, uniforms: { 'envMap': { value: null }, 'samples': { value: 1 }, 'weights': { value: weights }, 'latitudinal': { value: false }, 'dTheta': { value: 0 }, 'mipInt': { value: 0 }, 'poleAxis': { value: poleAxis }, 'inputEncoding': { value: ENCODINGS[ LinearEncoding ] }, 'outputEncoding': { value: ENCODINGS[ LinearEncoding ] } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */` precision mediump float; precision mediump int; varying vec3 vOutputDirection; uniform sampler2D envMap; uniform int samples; uniform float weights[ n ]; uniform bool latitudinal; uniform float dTheta; uniform float mipInt; uniform vec3 poleAxis; ${ _getEncodings() } #define ENVMAP_TYPE_CUBE_UV #include vec3 getSample( float theta, vec3 axis ) { float cosTheta = cos( theta ); // Rodrigues' axis-angle rotation vec3 sampleDirection = vOutputDirection * cosTheta + cross( axis, vOutputDirection ) * sin( theta ) + axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta ); return bilinearCubeUV( envMap, sampleDirection, mipInt ); } void main() { vec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection ); if ( all( equal( axis, vec3( 0.0 ) ) ) ) { axis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x ); } axis = normalize( axis ); gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 ); gl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis ); for ( int i = 1; i < n; i++ ) { if ( i >= samples ) { break; } float theta = dTheta * float( i ); gl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis ); gl_FragColor.rgb += weights[ i ] * getSample( theta, axis ); } gl_FragColor = linearToOutputTexel( gl_FragColor ); } `, blending: NoBlending, depthTest: false, depthWrite: false } ); return shaderMaterial; } function _getEquirectShader() { const texelSize = new Vector2( 1, 1 ); const shaderMaterial = new RawShaderMaterial( { name: 'EquirectangularToCubeUV', uniforms: { 'envMap': { value: null }, 'texelSize': { value: texelSize }, 'inputEncoding': { value: ENCODINGS[ LinearEncoding ] }, 'outputEncoding': { value: ENCODINGS[ LinearEncoding ] } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */` precision mediump float; precision mediump int; varying vec3 vOutputDirection; uniform sampler2D envMap; uniform vec2 texelSize; ${ _getEncodings() } #include void main() { gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 ); vec3 outputDirection = normalize( vOutputDirection ); vec2 uv = equirectUv( outputDirection ); vec2 f = fract( uv / texelSize - 0.5 ); uv -= f * texelSize; vec3 tl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb; uv.x += texelSize.x; vec3 tr = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb; uv.y += texelSize.y; vec3 br = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb; uv.x -= texelSize.x; vec3 bl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb; vec3 tm = mix( tl, tr, f.x ); vec3 bm = mix( bl, br, f.x ); gl_FragColor.rgb = mix( tm, bm, f.y ); gl_FragColor = linearToOutputTexel( gl_FragColor ); } `, blending: NoBlending, depthTest: false, depthWrite: false } ); return shaderMaterial; } function _getCubemapShader() { const shaderMaterial = new RawShaderMaterial( { name: 'CubemapToCubeUV', uniforms: { 'envMap': { value: null }, 'inputEncoding': { value: ENCODINGS[ LinearEncoding ] }, 'outputEncoding': { value: ENCODINGS[ LinearEncoding ] } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */` precision mediump float; precision mediump int; varying vec3 vOutputDirection; uniform samplerCube envMap; ${ _getEncodings() } void main() { gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 ); gl_FragColor.rgb = envMapTexelToLinear( textureCube( envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ) ) ).rgb; gl_FragColor = linearToOutputTexel( gl_FragColor ); } `, blending: NoBlending, depthTest: false, depthWrite: false } ); return shaderMaterial; } function _getCommonVertexShader() { return /* glsl */` precision mediump float; precision mediump int; attribute vec3 position; attribute vec2 uv; attribute float faceIndex; varying vec3 vOutputDirection; // RH coordinate system; PMREM face-indexing convention vec3 getDirection( vec2 uv, float face ) { uv = 2.0 * uv - 1.0; vec3 direction = vec3( uv, 1.0 ); if ( face == 0.0 ) { direction = direction.zyx; // ( 1, v, u ) pos x } else if ( face == 1.0 ) { direction = direction.xzy; direction.xz *= -1.0; // ( -u, 1, -v ) pos y } else if ( face == 2.0 ) { direction.x *= -1.0; // ( -u, v, 1 ) pos z } else if ( face == 3.0 ) { direction = direction.zyx; direction.xz *= -1.0; // ( -1, v, -u ) neg x } else if ( face == 4.0 ) { direction = direction.xzy; direction.xy *= -1.0; // ( -u, -1, v ) neg y } else if ( face == 5.0 ) { direction.z *= -1.0; // ( u, v, -1 ) neg z } return direction; } void main() { vOutputDirection = getDirection( uv, faceIndex ); gl_Position = vec4( position, 1.0 ); } `; } function _getEncodings() { return /* glsl */` uniform int inputEncoding; uniform int outputEncoding; #include vec4 inputTexelToLinear( vec4 value ) { if ( inputEncoding == 0 ) { return value; } else if ( inputEncoding == 1 ) { return sRGBToLinear( value ); } else if ( inputEncoding == 2 ) { return RGBEToLinear( value ); } else if ( inputEncoding == 3 ) { return RGBMToLinear( value, 7.0 ); } else if ( inputEncoding == 4 ) { return RGBMToLinear( value, 16.0 ); } else if ( inputEncoding == 5 ) { return RGBDToLinear( value, 256.0 ); } else { return GammaToLinear( value, 2.2 ); } } vec4 linearToOutputTexel( vec4 value ) { if ( outputEncoding == 0 ) { return value; } else if ( outputEncoding == 1 ) { return LinearTosRGB( value ); } else if ( outputEncoding == 2 ) { return LinearToRGBE( value ); } else if ( outputEncoding == 3 ) { return LinearToRGBM( value, 7.0 ); } else if ( outputEncoding == 4 ) { return LinearToRGBM( value, 16.0 ); } else if ( outputEncoding == 5 ) { return LinearToRGBD( value, 256.0 ); } else { return LinearToGamma( value, 2.2 ); } } vec4 envMapTexelToLinear( vec4 color ) { return inputTexelToLinear( color ); } `; } function WebGLCubeUVMaps( renderer ) { let cubeUVmaps = new WeakMap(); let pmremGenerator = null; function get( texture ) { if ( texture && texture.isTexture && texture.isRenderTargetTexture === false ) { const mapping = texture.mapping; const isEquirectMap = ( mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping ); const isCubeMap = ( mapping === CubeReflectionMapping || mapping === CubeRefractionMapping ); if ( isEquirectMap || isCubeMap ) { // equirect/cube map to cubeUV conversion if ( cubeUVmaps.has( texture ) ) { return cubeUVmaps.get( texture ).texture; } else { const image = texture.image; if ( ( isEquirectMap && image && image.height > 0 ) || ( isCubeMap && image && isCubeTextureComplete( image ) ) ) { const currentRenderTarget = renderer.getRenderTarget(); if ( pmremGenerator === null ) pmremGenerator = new PMREMGenerator( renderer ); const renderTarget = isEquirectMap ? pmremGenerator.fromEquirectangular( texture ) : pmremGenerator.fromCubemap( texture ); cubeUVmaps.set( texture, renderTarget ); renderer.setRenderTarget( currentRenderTarget ); texture.addEventListener( 'dispose', onTextureDispose ); return renderTarget.texture; } else { // image not yet ready. try the conversion next frame return null; } } } } return texture; } function isCubeTextureComplete( image ) { let count = 0; const length = 6; for ( let i = 0; i < length; i ++ ) { if ( image[ i ] !== undefined ) count ++; } return count === length; } function onTextureDispose( event ) { const texture = event.target; texture.removeEventListener( 'dispose', onTextureDispose ); const cubemapUV = cubeUVmaps.get( texture ); if ( cubemapUV !== undefined ) { cubeUVmaps.delete( texture ); cubemapUV.dispose(); } } function dispose() { cubeUVmaps = new WeakMap(); if ( pmremGenerator !== null ) { pmremGenerator.dispose(); pmremGenerator = null; } } return { get: get, dispose: dispose }; } function WebGLExtensions( gl ) { const extensions = {}; function getExtension( name ) { if ( extensions[ name ] !== undefined ) { return extensions[ name ]; } let extension; switch ( name ) { case 'WEBGL_depth_texture': extension = gl.getExtension( 'WEBGL_depth_texture' ) || gl.getExtension( 'MOZ_WEBGL_depth_texture' ) || gl.getExtension( 'WEBKIT_WEBGL_depth_texture' ); break; case 'EXT_texture_filter_anisotropic': extension = gl.getExtension( 'EXT_texture_filter_anisotropic' ) || gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' ); break; case 'WEBGL_compressed_texture_s3tc': extension = gl.getExtension( 'WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'MOZ_WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_s3tc' ); break; case 'WEBGL_compressed_texture_pvrtc': extension = gl.getExtension( 'WEBGL_compressed_texture_pvrtc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_pvrtc' ); break; default: extension = gl.getExtension( name ); } extensions[ name ] = extension; return extension; } return { has: function ( name ) { return getExtension( name ) !== null; }, init: function ( capabilities ) { if ( capabilities.isWebGL2 ) { getExtension( 'EXT_color_buffer_float' ); } else { getExtension( 'WEBGL_depth_texture' ); getExtension( 'OES_texture_float' ); getExtension( 'OES_texture_half_float' ); getExtension( 'OES_texture_half_float_linear' ); getExtension( 'OES_standard_derivatives' ); getExtension( 'OES_element_index_uint' ); getExtension( 'OES_vertex_array_object' ); getExtension( 'ANGLE_instanced_arrays' ); } getExtension( 'OES_texture_float_linear' ); getExtension( 'EXT_color_buffer_half_float' ); }, get: function ( name ) { const extension = getExtension( name ); if ( extension === null ) { console.warn( 'THREE.WebGLRenderer: ' + name + ' extension not supported.' ); } return extension; } }; } function WebGLGeometries( gl, attributes, info, bindingStates ) { const geometries = {}; const wireframeAttributes = new WeakMap(); function onGeometryDispose( event ) { const geometry = event.target; if ( geometry.index !== null ) { attributes.remove( geometry.index ); } for ( const name in geometry.attributes ) { attributes.remove( geometry.attributes[ name ] ); } geometry.removeEventListener( 'dispose', onGeometryDispose ); delete geometries[ geometry.id ]; const attribute = wireframeAttributes.get( geometry ); if ( attribute ) { attributes.remove( attribute ); wireframeAttributes.delete( geometry ); } bindingStates.releaseStatesOfGeometry( geometry ); if ( geometry.isInstancedBufferGeometry === true ) { delete geometry._maxInstanceCount; } // info.memory.geometries --; } function get( object, geometry ) { if ( geometries[ geometry.id ] === true ) return geometry; geometry.addEventListener( 'dispose', onGeometryDispose ); geometries[ geometry.id ] = true; info.memory.geometries ++; return geometry; } function update( geometry ) { const geometryAttributes = geometry.attributes; // Updating index buffer in VAO now. See WebGLBindingStates. for ( const name in geometryAttributes ) { attributes.update( geometryAttributes[ name ], 34962 ); } // morph targets const morphAttributes = geometry.morphAttributes; for ( const name in morphAttributes ) { const array = morphAttributes[ name ]; for ( let i = 0, l = array.length; i < l; i ++ ) { attributes.update( array[ i ], 34962 ); } } } function updateWireframeAttribute( geometry ) { const indices = []; const geometryIndex = geometry.index; const geometryPosition = geometry.attributes.position; let version = 0; if ( geometryIndex !== null ) { const array = geometryIndex.array; version = geometryIndex.version; for ( let i = 0, l = array.length; i < l; i += 3 ) { const a = array[ i + 0 ]; const b = array[ i + 1 ]; const c = array[ i + 2 ]; indices.push( a, b, b, c, c, a ); } } else { const array = geometryPosition.array; version = geometryPosition.version; for ( let i = 0, l = ( array.length / 3 ) - 1; i < l; i += 3 ) { const a = i + 0; const b = i + 1; const c = i + 2; indices.push( a, b, b, c, c, a ); } } const attribute = new ( arrayMax( indices ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( indices, 1 ); attribute.version = version; // Updating index buffer in VAO now. See WebGLBindingStates // const previousAttribute = wireframeAttributes.get( geometry ); if ( previousAttribute ) attributes.remove( previousAttribute ); // wireframeAttributes.set( geometry, attribute ); } function getWireframeAttribute( geometry ) { const currentAttribute = wireframeAttributes.get( geometry ); if ( currentAttribute ) { const geometryIndex = geometry.index; if ( geometryIndex !== null ) { // if the attribute is obsolete, create a new one if ( currentAttribute.version < geometryIndex.version ) { updateWireframeAttribute( geometry ); } } } else { updateWireframeAttribute( geometry ); } return wireframeAttributes.get( geometry ); } return { get: get, update: update, getWireframeAttribute: getWireframeAttribute }; } function WebGLIndexedBufferRenderer( gl, extensions, info, capabilities ) { const isWebGL2 = capabilities.isWebGL2; let mode; function setMode( value ) { mode = value; } let type, bytesPerElement; function setIndex( value ) { type = value.type; bytesPerElement = value.bytesPerElement; } function render( start, count ) { gl.drawElements( mode, count, type, start * bytesPerElement ); info.update( count, mode, 1 ); } function renderInstances( start, count, primcount ) { if ( primcount === 0 ) return; let extension, methodName; if ( isWebGL2 ) { extension = gl; methodName = 'drawElementsInstanced'; } else { extension = extensions.get( 'ANGLE_instanced_arrays' ); methodName = 'drawElementsInstancedANGLE'; if ( extension === null ) { console.error( 'THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); return; } } extension[ methodName ]( mode, count, type, start * bytesPerElement, primcount ); info.update( count, mode, primcount ); } // this.setMode = setMode; this.setIndex = setIndex; this.render = render; this.renderInstances = renderInstances; } function WebGLInfo( gl ) { const memory = { geometries: 0, textures: 0 }; const render = { frame: 0, calls: 0, triangles: 0, points: 0, lines: 0 }; function update( count, mode, instanceCount ) { render.calls ++; switch ( mode ) { case 4: render.triangles += instanceCount * ( count / 3 ); break; case 1: render.lines += instanceCount * ( count / 2 ); break; case 3: render.lines += instanceCount * ( count - 1 ); break; case 2: render.lines += instanceCount * count; break; case 0: render.points += instanceCount * count; break; default: console.error( 'THREE.WebGLInfo: Unknown draw mode:', mode ); break; } } function reset() { render.frame ++; render.calls = 0; render.triangles = 0; render.points = 0; render.lines = 0; } return { memory: memory, render: render, programs: null, autoReset: true, reset: reset, update: update }; } function numericalSort( a, b ) { return a[ 0 ] - b[ 0 ]; } function absNumericalSort( a, b ) { return Math.abs( b[ 1 ] ) - Math.abs( a[ 1 ] ); } function WebGLMorphtargets( gl ) { const influencesList = {}; const morphInfluences = new Float32Array( 8 ); const workInfluences = []; for ( let i = 0; i < 8; i ++ ) { workInfluences[ i ] = [ i, 0 ]; } function update( object, geometry, material, program ) { const objectInfluences = object.morphTargetInfluences; // When object doesn't have morph target influences defined, we treat it as a 0-length array // This is important to make sure we set up morphTargetBaseInfluence / morphTargetInfluences const length = objectInfluences === undefined ? 0 : objectInfluences.length; let influences = influencesList[ geometry.id ]; if ( influences === undefined || influences.length !== length ) { // initialise list influences = []; for ( let i = 0; i < length; i ++ ) { influences[ i ] = [ i, 0 ]; } influencesList[ geometry.id ] = influences; } // Collect influences for ( let i = 0; i < length; i ++ ) { const influence = influences[ i ]; influence[ 0 ] = i; influence[ 1 ] = objectInfluences[ i ]; } influences.sort( absNumericalSort ); for ( let i = 0; i < 8; i ++ ) { if ( i < length && influences[ i ][ 1 ] ) { workInfluences[ i ][ 0 ] = influences[ i ][ 0 ]; workInfluences[ i ][ 1 ] = influences[ i ][ 1 ]; } else { workInfluences[ i ][ 0 ] = Number.MAX_SAFE_INTEGER; workInfluences[ i ][ 1 ] = 0; } } workInfluences.sort( numericalSort ); const morphTargets = geometry.morphAttributes.position; const morphNormals = geometry.morphAttributes.normal; let morphInfluencesSum = 0; for ( let i = 0; i < 8; i ++ ) { const influence = workInfluences[ i ]; const index = influence[ 0 ]; const value = influence[ 1 ]; if ( index !== Number.MAX_SAFE_INTEGER && value ) { if ( morphTargets && geometry.getAttribute( 'morphTarget' + i ) !== morphTargets[ index ] ) { geometry.setAttribute( 'morphTarget' + i, morphTargets[ index ] ); } if ( morphNormals && geometry.getAttribute( 'morphNormal' + i ) !== morphNormals[ index ] ) { geometry.setAttribute( 'morphNormal' + i, morphNormals[ index ] ); } morphInfluences[ i ] = value; morphInfluencesSum += value; } else { if ( morphTargets && geometry.hasAttribute( 'morphTarget' + i ) === true ) { geometry.deleteAttribute( 'morphTarget' + i ); } if ( morphNormals && geometry.hasAttribute( 'morphNormal' + i ) === true ) { geometry.deleteAttribute( 'morphNormal' + i ); } morphInfluences[ i ] = 0; } } // GLSL shader uses formula baseinfluence * base + sum(target * influence) // This allows us to switch between absolute morphs and relative morphs without changing shader code // When baseinfluence = 1 - sum(influence), the above is equivalent to sum((target - base) * influence) const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum; program.getUniforms().setValue( gl, 'morphTargetBaseInfluence', morphBaseInfluence ); program.getUniforms().setValue( gl, 'morphTargetInfluences', morphInfluences ); } return { update: update }; } function WebGLObjects( gl, geometries, attributes, info ) { let updateMap = new WeakMap(); function update( object ) { const frame = info.render.frame; const geometry = object.geometry; const buffergeometry = geometries.get( object, geometry ); // Update once per frame if ( updateMap.get( buffergeometry ) !== frame ) { geometries.update( buffergeometry ); updateMap.set( buffergeometry, frame ); } if ( object.isInstancedMesh ) { if ( object.hasEventListener( 'dispose', onInstancedMeshDispose ) === false ) { object.addEventListener( 'dispose', onInstancedMeshDispose ); } attributes.update( object.instanceMatrix, 34962 ); if ( object.instanceColor !== null ) { attributes.update( object.instanceColor, 34962 ); } } return buffergeometry; } function dispose() { updateMap = new WeakMap(); } function onInstancedMeshDispose( event ) { const instancedMesh = event.target; instancedMesh.removeEventListener( 'dispose', onInstancedMeshDispose ); attributes.remove( instancedMesh.instanceMatrix ); if ( instancedMesh.instanceColor !== null ) attributes.remove( instancedMesh.instanceColor ); } return { update: update, dispose: dispose }; } class DataTexture2DArray extends Texture { constructor( data = null, width = 1, height = 1, depth = 1 ) { super( null ); this.image = { data, width, height, depth }; this.magFilter = NearestFilter; this.minFilter = NearestFilter; this.wrapR = ClampToEdgeWrapping; this.generateMipmaps = false; this.flipY = false; this.unpackAlignment = 1; this.needsUpdate = true; } } DataTexture2DArray.prototype.isDataTexture2DArray = true; class DataTexture3D extends Texture { constructor( data = null, width = 1, height = 1, depth = 1 ) { // We're going to add .setXXX() methods for setting properties later. // Users can still set in DataTexture3D directly. // // const texture = new THREE.DataTexture3D( data, width, height, depth ); // texture.anisotropy = 16; // // See #14839 super( null ); this.image = { data, width, height, depth }; this.magFilter = NearestFilter; this.minFilter = NearestFilter; this.wrapR = ClampToEdgeWrapping; this.generateMipmaps = false; this.flipY = false; this.unpackAlignment = 1; this.needsUpdate = true; } } DataTexture3D.prototype.isDataTexture3D = true; /** * Uniforms of a program. * Those form a tree structure with a special top-level container for the root, * which you get by calling 'new WebGLUniforms( gl, program )'. * * * Properties of inner nodes including the top-level container: * * .seq - array of nested uniforms * .map - nested uniforms by name * * * Methods of all nodes except the top-level container: * * .setValue( gl, value, [textures] ) * * uploads a uniform value(s) * the 'textures' parameter is needed for sampler uniforms * * * Static methods of the top-level container (textures factorizations): * * .upload( gl, seq, values, textures ) * * sets uniforms in 'seq' to 'values[id].value' * * .seqWithValue( seq, values ) : filteredSeq * * filters 'seq' entries with corresponding entry in values * * * Methods of the top-level container (textures factorizations): * * .setValue( gl, name, value, textures ) * * sets uniform with name 'name' to 'value' * * .setOptional( gl, obj, prop ) * * like .set for an optional property of the object * */ const emptyTexture = new Texture(); const emptyTexture2dArray = new DataTexture2DArray(); const emptyTexture3d = new DataTexture3D(); const emptyCubeTexture = new CubeTexture(); // --- Utilities --- // Array Caches (provide typed arrays for temporary by size) const arrayCacheF32 = []; const arrayCacheI32 = []; // Float32Array caches used for uploading Matrix uniforms const mat4array = new Float32Array( 16 ); const mat3array = new Float32Array( 9 ); const mat2array = new Float32Array( 4 ); // Flattening for arrays of vectors and matrices function flatten( array, nBlocks, blockSize ) { const firstElem = array[ 0 ]; if ( firstElem <= 0 || firstElem > 0 ) return array; // unoptimized: ! isNaN( firstElem ) // see http://jacksondunstan.com/articles/983 const n = nBlocks * blockSize; let r = arrayCacheF32[ n ]; if ( r === undefined ) { r = new Float32Array( n ); arrayCacheF32[ n ] = r; } if ( nBlocks !== 0 ) { firstElem.toArray( r, 0 ); for ( let i = 1, offset = 0; i !== nBlocks; ++ i ) { offset += blockSize; array[ i ].toArray( r, offset ); } } return r; } function arraysEqual( a, b ) { if ( a.length !== b.length ) return false; for ( let i = 0, l = a.length; i < l; i ++ ) { if ( a[ i ] !== b[ i ] ) return false; } return true; } function copyArray( a, b ) { for ( let i = 0, l = b.length; i < l; i ++ ) { a[ i ] = b[ i ]; } } // Texture unit allocation function allocTexUnits( textures, n ) { let r = arrayCacheI32[ n ]; if ( r === undefined ) { r = new Int32Array( n ); arrayCacheI32[ n ] = r; } for ( let i = 0; i !== n; ++ i ) { r[ i ] = textures.allocateTextureUnit(); } return r; } // --- Setters --- // Note: Defining these methods externally, because they come in a bunch // and this way their names minify. // Single scalar function setValueV1f( gl, v ) { const cache = this.cache; if ( cache[ 0 ] === v ) return; gl.uniform1f( this.addr, v ); cache[ 0 ] = v; } // Single float vector (from flat array or THREE.VectorN) function setValueV2f( gl, v ) { const cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y ) { gl.uniform2f( this.addr, v.x, v.y ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; } } else { if ( arraysEqual( cache, v ) ) return; gl.uniform2fv( this.addr, v ); copyArray( cache, v ); } } function setValueV3f( gl, v ) { const cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z ) { gl.uniform3f( this.addr, v.x, v.y, v.z ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; cache[ 2 ] = v.z; } } else if ( v.r !== undefined ) { if ( cache[ 0 ] !== v.r || cache[ 1 ] !== v.g || cache[ 2 ] !== v.b ) { gl.uniform3f( this.addr, v.r, v.g, v.b ); cache[ 0 ] = v.r; cache[ 1 ] = v.g; cache[ 2 ] = v.b; } } else { if ( arraysEqual( cache, v ) ) return; gl.uniform3fv( this.addr, v ); copyArray( cache, v ); } } function setValueV4f( gl, v ) { const cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z || cache[ 3 ] !== v.w ) { gl.uniform4f( this.addr, v.x, v.y, v.z, v.w ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; cache[ 2 ] = v.z; cache[ 3 ] = v.w; } } else { if ( arraysEqual( cache, v ) ) return; gl.uniform4fv( this.addr, v ); copyArray( cache, v ); } } // Single matrix (from flat array or THREE.MatrixN) function setValueM2( gl, v ) { const cache = this.cache; const elements = v.elements; if ( elements === undefined ) { if ( arraysEqual( cache, v ) ) return; gl.uniformMatrix2fv( this.addr, false, v ); copyArray( cache, v ); } else { if ( arraysEqual( cache, elements ) ) return; mat2array.set( elements ); gl.uniformMatrix2fv( this.addr, false, mat2array ); copyArray( cache, elements ); } } function setValueM3( gl, v ) { const cache = this.cache; const elements = v.elements; if ( elements === undefined ) { if ( arraysEqual( cache, v ) ) return; gl.uniformMatrix3fv( this.addr, false, v ); copyArray( cache, v ); } else { if ( arraysEqual( cache, elements ) ) return; mat3array.set( elements ); gl.uniformMatrix3fv( this.addr, false, mat3array ); copyArray( cache, elements ); } } function setValueM4( gl, v ) { const cache = this.cache; const elements = v.elements; if ( elements === undefined ) { if ( arraysEqual( cache, v ) ) return; gl.uniformMatrix4fv( this.addr, false, v ); copyArray( cache, v ); } else { if ( arraysEqual( cache, elements ) ) return; mat4array.set( elements ); gl.uniformMatrix4fv( this.addr, false, mat4array ); copyArray( cache, elements ); } } // Single integer / boolean function setValueV1i( gl, v ) { const cache = this.cache; if ( cache[ 0 ] === v ) return; gl.uniform1i( this.addr, v ); cache[ 0 ] = v; } // Single integer / boolean vector (from flat array) function setValueV2i( gl, v ) { const cache = this.cache; if ( arraysEqual( cache, v ) ) return; gl.uniform2iv( this.addr, v ); copyArray( cache, v ); } function setValueV3i( gl, v ) { const cache = this.cache; if ( arraysEqual( cache, v ) ) return; gl.uniform3iv( this.addr, v ); copyArray( cache, v ); } function setValueV4i( gl, v ) { const cache = this.cache; if ( arraysEqual( cache, v ) ) return; gl.uniform4iv( this.addr, v ); copyArray( cache, v ); } // Single unsigned integer function setValueV1ui( gl, v ) { const cache = this.cache; if ( cache[ 0 ] === v ) return; gl.uniform1ui( this.addr, v ); cache[ 0 ] = v; } // Single unsigned integer vector (from flat array) function setValueV2ui( gl, v ) { const cache = this.cache; if ( arraysEqual( cache, v ) ) return; gl.uniform2uiv( this.addr, v ); copyArray( cache, v ); } function setValueV3ui( gl, v ) { const cache = this.cache; if ( arraysEqual( cache, v ) ) return; gl.uniform3uiv( this.addr, v ); copyArray( cache, v ); } function setValueV4ui( gl, v ) { const cache = this.cache; if ( arraysEqual( cache, v ) ) return; gl.uniform4uiv( this.addr, v ); copyArray( cache, v ); } // Single texture (2D / Cube) function setValueT1( gl, v, textures ) { const cache = this.cache; const unit = textures.allocateTextureUnit(); if ( cache[ 0 ] !== unit ) { gl.uniform1i( this.addr, unit ); cache[ 0 ] = unit; } textures.safeSetTexture2D( v || emptyTexture, unit ); } function setValueT3D1( gl, v, textures ) { const cache = this.cache; const unit = textures.allocateTextureUnit(); if ( cache[ 0 ] !== unit ) { gl.uniform1i( this.addr, unit ); cache[ 0 ] = unit; } textures.setTexture3D( v || emptyTexture3d, unit ); } function setValueT6( gl, v, textures ) { const cache = this.cache; const unit = textures.allocateTextureUnit(); if ( cache[ 0 ] !== unit ) { gl.uniform1i( this.addr, unit ); cache[ 0 ] = unit; } textures.safeSetTextureCube( v || emptyCubeTexture, unit ); } function setValueT2DArray1( gl, v, textures ) { const cache = this.cache; const unit = textures.allocateTextureUnit(); if ( cache[ 0 ] !== unit ) { gl.uniform1i( this.addr, unit ); cache[ 0 ] = unit; } textures.setTexture2DArray( v || emptyTexture2dArray, unit ); } // Helper to pick the right setter for the singular case function getSingularSetter( type ) { switch ( type ) { case 0x1406: return setValueV1f; // FLOAT case 0x8b50: return setValueV2f; // _VEC2 case 0x8b51: return setValueV3f; // _VEC3 case 0x8b52: return setValueV4f; // _VEC4 case 0x8b5a: return setValueM2; // _MAT2 case 0x8b5b: return setValueM3; // _MAT3 case 0x8b5c: return setValueM4; // _MAT4 case 0x1404: case 0x8b56: return setValueV1i; // INT, BOOL case 0x8b53: case 0x8b57: return setValueV2i; // _VEC2 case 0x8b54: case 0x8b58: return setValueV3i; // _VEC3 case 0x8b55: case 0x8b59: return setValueV4i; // _VEC4 case 0x1405: return setValueV1ui; // UINT case 0x8dc6: return setValueV2ui; // _VEC2 case 0x8dc7: return setValueV3ui; // _VEC3 case 0x8dc8: return setValueV4ui; // _VEC4 case 0x8b5e: // SAMPLER_2D case 0x8d66: // SAMPLER_EXTERNAL_OES case 0x8dca: // INT_SAMPLER_2D case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D case 0x8b62: // SAMPLER_2D_SHADOW return setValueT1; case 0x8b5f: // SAMPLER_3D case 0x8dcb: // INT_SAMPLER_3D case 0x8dd3: // UNSIGNED_INT_SAMPLER_3D return setValueT3D1; case 0x8b60: // SAMPLER_CUBE case 0x8dcc: // INT_SAMPLER_CUBE case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE case 0x8dc5: // SAMPLER_CUBE_SHADOW return setValueT6; case 0x8dc1: // SAMPLER_2D_ARRAY case 0x8dcf: // INT_SAMPLER_2D_ARRAY case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY case 0x8dc4: // SAMPLER_2D_ARRAY_SHADOW return setValueT2DArray1; } } // Array of scalars function setValueV1fArray( gl, v ) { gl.uniform1fv( this.addr, v ); } // Array of vectors (from flat array or array of THREE.VectorN) function setValueV2fArray( gl, v ) { const data = flatten( v, this.size, 2 ); gl.uniform2fv( this.addr, data ); } function setValueV3fArray( gl, v ) { const data = flatten( v, this.size, 3 ); gl.uniform3fv( this.addr, data ); } function setValueV4fArray( gl, v ) { const data = flatten( v, this.size, 4 ); gl.uniform4fv( this.addr, data ); } // Array of matrices (from flat array or array of THREE.MatrixN) function setValueM2Array( gl, v ) { const data = flatten( v, this.size, 4 ); gl.uniformMatrix2fv( this.addr, false, data ); } function setValueM3Array( gl, v ) { const data = flatten( v, this.size, 9 ); gl.uniformMatrix3fv( this.addr, false, data ); } function setValueM4Array( gl, v ) { const data = flatten( v, this.size, 16 ); gl.uniformMatrix4fv( this.addr, false, data ); } // Array of integer / boolean function setValueV1iArray( gl, v ) { gl.uniform1iv( this.addr, v ); } // Array of integer / boolean vectors (from flat array) function setValueV2iArray( gl, v ) { gl.uniform2iv( this.addr, v ); } function setValueV3iArray( gl, v ) { gl.uniform3iv( this.addr, v ); } function setValueV4iArray( gl, v ) { gl.uniform4iv( this.addr, v ); } // Array of unsigned integer function setValueV1uiArray( gl, v ) { gl.uniform1uiv( this.addr, v ); } // Array of unsigned integer vectors (from flat array) function setValueV2uiArray( gl, v ) { gl.uniform2uiv( this.addr, v ); } function setValueV3uiArray( gl, v ) { gl.uniform3uiv( this.addr, v ); } function setValueV4uiArray( gl, v ) { gl.uniform4uiv( this.addr, v ); } // Array of textures (2D / Cube) function setValueT1Array( gl, v, textures ) { const n = v.length; const units = allocTexUnits( textures, n ); gl.uniform1iv( this.addr, units ); for ( let i = 0; i !== n; ++ i ) { textures.safeSetTexture2D( v[ i ] || emptyTexture, units[ i ] ); } } function setValueT6Array( gl, v, textures ) { const n = v.length; const units = allocTexUnits( textures, n ); gl.uniform1iv( this.addr, units ); for ( let i = 0; i !== n; ++ i ) { textures.safeSetTextureCube( v[ i ] || emptyCubeTexture, units[ i ] ); } } // Helper to pick the right setter for a pure (bottom-level) array function getPureArraySetter( type ) { switch ( type ) { case 0x1406: return setValueV1fArray; // FLOAT case 0x8b50: return setValueV2fArray; // _VEC2 case 0x8b51: return setValueV3fArray; // _VEC3 case 0x8b52: return setValueV4fArray; // _VEC4 case 0x8b5a: return setValueM2Array; // _MAT2 case 0x8b5b: return setValueM3Array; // _MAT3 case 0x8b5c: return setValueM4Array; // _MAT4 case 0x1404: case 0x8b56: return setValueV1iArray; // INT, BOOL case 0x8b53: case 0x8b57: return setValueV2iArray; // _VEC2 case 0x8b54: case 0x8b58: return setValueV3iArray; // _VEC3 case 0x8b55: case 0x8b59: return setValueV4iArray; // _VEC4 case 0x1405: return setValueV1uiArray; // UINT case 0x8dc6: return setValueV2uiArray; // _VEC2 case 0x8dc7: return setValueV3uiArray; // _VEC3 case 0x8dc8: return setValueV4uiArray; // _VEC4 case 0x8b5e: // SAMPLER_2D case 0x8d66: // SAMPLER_EXTERNAL_OES case 0x8dca: // INT_SAMPLER_2D case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D case 0x8b62: // SAMPLER_2D_SHADOW return setValueT1Array; case 0x8b60: // SAMPLER_CUBE case 0x8dcc: // INT_SAMPLER_CUBE case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE case 0x8dc5: // SAMPLER_CUBE_SHADOW return setValueT6Array; } } // --- Uniform Classes --- function SingleUniform( id, activeInfo, addr ) { this.id = id; this.addr = addr; this.cache = []; this.setValue = getSingularSetter( activeInfo.type ); // this.path = activeInfo.name; // DEBUG } function PureArrayUniform( id, activeInfo, addr ) { this.id = id; this.addr = addr; this.cache = []; this.size = activeInfo.size; this.setValue = getPureArraySetter( activeInfo.type ); // this.path = activeInfo.name; // DEBUG } PureArrayUniform.prototype.updateCache = function ( data ) { const cache = this.cache; if ( data instanceof Float32Array && cache.length !== data.length ) { this.cache = new Float32Array( data.length ); } copyArray( cache, data ); }; function StructuredUniform( id ) { this.id = id; this.seq = []; this.map = {}; } StructuredUniform.prototype.setValue = function ( gl, value, textures ) { const seq = this.seq; for ( let i = 0, n = seq.length; i !== n; ++ i ) { const u = seq[ i ]; u.setValue( gl, value[ u.id ], textures ); } }; // --- Top-level --- // Parser - builds up the property tree from the path strings const RePathPart = /(\w+)(\])?(\[|\.)?/g; // extracts // - the identifier (member name or array index) // - followed by an optional right bracket (found when array index) // - followed by an optional left bracket or dot (type of subscript) // // Note: These portions can be read in a non-overlapping fashion and // allow straightforward parsing of the hierarchy that WebGL encodes // in the uniform names. function addUniform( container, uniformObject ) { container.seq.push( uniformObject ); container.map[ uniformObject.id ] = uniformObject; } function parseUniform( activeInfo, addr, container ) { const path = activeInfo.name, pathLength = path.length; // reset RegExp object, because of the early exit of a previous run RePathPart.lastIndex = 0; while ( true ) { const match = RePathPart.exec( path ), matchEnd = RePathPart.lastIndex; let id = match[ 1 ]; const idIsIndex = match[ 2 ] === ']', subscript = match[ 3 ]; if ( idIsIndex ) id = id | 0; // convert to integer if ( subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength ) { // bare name or "pure" bottom-level array "[0]" suffix addUniform( container, subscript === undefined ? new SingleUniform( id, activeInfo, addr ) : new PureArrayUniform( id, activeInfo, addr ) ); break; } else { // step into inner node / create it in case it doesn't exist const map = container.map; let next = map[ id ]; if ( next === undefined ) { next = new StructuredUniform( id ); addUniform( container, next ); } container = next; } } } // Root Container function WebGLUniforms( gl, program ) { this.seq = []; this.map = {}; const n = gl.getProgramParameter( program, 35718 ); for ( let i = 0; i < n; ++ i ) { const info = gl.getActiveUniform( program, i ), addr = gl.getUniformLocation( program, info.name ); parseUniform( info, addr, this ); } } WebGLUniforms.prototype.setValue = function ( gl, name, value, textures ) { const u = this.map[ name ]; if ( u !== undefined ) u.setValue( gl, value, textures ); }; WebGLUniforms.prototype.setOptional = function ( gl, object, name ) { const v = object[ name ]; if ( v !== undefined ) this.setValue( gl, name, v ); }; // Static interface WebGLUniforms.upload = function ( gl, seq, values, textures ) { for ( let i = 0, n = seq.length; i !== n; ++ i ) { const u = seq[ i ], v = values[ u.id ]; if ( v.needsUpdate !== false ) { // note: always updating when .needsUpdate is undefined u.setValue( gl, v.value, textures ); } } }; WebGLUniforms.seqWithValue = function ( seq, values ) { const r = []; for ( let i = 0, n = seq.length; i !== n; ++ i ) { const u = seq[ i ]; if ( u.id in values ) r.push( u ); } return r; }; function WebGLShader( gl, type, string ) { const shader = gl.createShader( type ); gl.shaderSource( shader, string ); gl.compileShader( shader ); return shader; } let programIdCount = 0; function addLineNumbers( string ) { const lines = string.split( '\n' ); for ( let i = 0; i < lines.length; i ++ ) { lines[ i ] = ( i + 1 ) + ': ' + lines[ i ]; } return lines.join( '\n' ); } function getEncodingComponents( encoding ) { switch ( encoding ) { case LinearEncoding: return [ 'Linear', '( value )' ]; case sRGBEncoding: return [ 'sRGB', '( value )' ]; case RGBEEncoding: return [ 'RGBE', '( value )' ]; case RGBM7Encoding: return [ 'RGBM', '( value, 7.0 )' ]; case RGBM16Encoding: return [ 'RGBM', '( value, 16.0 )' ]; case RGBDEncoding: return [ 'RGBD', '( value, 256.0 )' ]; case GammaEncoding: return [ 'Gamma', '( value, float( GAMMA_FACTOR ) )' ]; case LogLuvEncoding: return [ 'LogLuv', '( value )' ]; default: console.warn( 'THREE.WebGLProgram: Unsupported encoding:', encoding ); return [ 'Linear', '( value )' ]; } } function getShaderErrors( gl, shader, type ) { const status = gl.getShaderParameter( shader, 35713 ); const errors = gl.getShaderInfoLog( shader ).trim(); if ( status && errors === '' ) return ''; // --enable-privileged-webgl-extension // console.log( '**' + type + '**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) ); return type.toUpperCase() + '\n\n' + errors + '\n\n' + addLineNumbers( gl.getShaderSource( shader ) ); } function getTexelDecodingFunction( functionName, encoding ) { const components = getEncodingComponents( encoding ); return 'vec4 ' + functionName + '( vec4 value ) { return ' + components[ 0 ] + 'ToLinear' + components[ 1 ] + '; }'; } function getTexelEncodingFunction( functionName, encoding ) { const components = getEncodingComponents( encoding ); return 'vec4 ' + functionName + '( vec4 value ) { return LinearTo' + components[ 0 ] + components[ 1 ] + '; }'; } function getToneMappingFunction( functionName, toneMapping ) { let toneMappingName; switch ( toneMapping ) { case LinearToneMapping: toneMappingName = 'Linear'; break; case ReinhardToneMapping: toneMappingName = 'Reinhard'; break; case CineonToneMapping: toneMappingName = 'OptimizedCineon'; break; case ACESFilmicToneMapping: toneMappingName = 'ACESFilmic'; break; case CustomToneMapping: toneMappingName = 'Custom'; break; default: console.warn( 'THREE.WebGLProgram: Unsupported toneMapping:', toneMapping ); toneMappingName = 'Linear'; } return 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }'; } function generateExtensions( parameters ) { const chunks = [ ( parameters.extensionDerivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.tangentSpaceNormalMap || parameters.clearcoatNormalMap || parameters.flatShading || parameters.shaderID === 'physical' ) ? '#extension GL_OES_standard_derivatives : enable' : '', ( parameters.extensionFragDepth || parameters.logarithmicDepthBuffer ) && parameters.rendererExtensionFragDepth ? '#extension GL_EXT_frag_depth : enable' : '', ( parameters.extensionDrawBuffers && parameters.rendererExtensionDrawBuffers ) ? '#extension GL_EXT_draw_buffers : require' : '', ( parameters.extensionShaderTextureLOD || parameters.envMap || parameters.transmission ) && parameters.rendererExtensionShaderTextureLod ? '#extension GL_EXT_shader_texture_lod : enable' : '' ]; return chunks.filter( filterEmptyLine ).join( '\n' ); } function generateDefines( defines ) { const chunks = []; for ( const name in defines ) { const value = defines[ name ]; if ( value === false ) continue; chunks.push( '#define ' + name + ' ' + value ); } return chunks.join( '\n' ); } function fetchAttributeLocations( gl, program ) { const attributes = {}; const n = gl.getProgramParameter( program, 35721 ); for ( let i = 0; i < n; i ++ ) { const info = gl.getActiveAttrib( program, i ); const name = info.name; let locationSize = 1; if ( info.type === 35674 ) locationSize = 2; if ( info.type === 35675 ) locationSize = 3; if ( info.type === 35676 ) locationSize = 4; // console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i ); attributes[ name ] = { type: info.type, location: gl.getAttribLocation( program, name ), locationSize: locationSize }; } return attributes; } function filterEmptyLine( string ) { return string !== ''; } function replaceLightNums( string, parameters ) { return string .replace( /NUM_DIR_LIGHTS/g, parameters.numDirLights ) .replace( /NUM_SPOT_LIGHTS/g, parameters.numSpotLights ) .replace( /NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights ) .replace( /NUM_POINT_LIGHTS/g, parameters.numPointLights ) .replace( /NUM_HEMI_LIGHTS/g, parameters.numHemiLights ) .replace( /NUM_DIR_LIGHT_SHADOWS/g, parameters.numDirLightShadows ) .replace( /NUM_SPOT_LIGHT_SHADOWS/g, parameters.numSpotLightShadows ) .replace( /NUM_POINT_LIGHT_SHADOWS/g, parameters.numPointLightShadows ); } function replaceClippingPlaneNums( string, parameters ) { return string .replace( /NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes ) .replace( /UNION_CLIPPING_PLANES/g, ( parameters.numClippingPlanes - parameters.numClipIntersection ) ); } // Resolve Includes const includePattern = /^[ \t]*#include +<([\w\d./]+)>/gm; function resolveIncludes( string ) { return string.replace( includePattern, includeReplacer ); } function includeReplacer( match, include ) { const string = ShaderChunk[ include ]; if ( string === undefined ) { throw new Error( 'Can not resolve #include <' + include + '>' ); } return resolveIncludes( string ); } // Unroll Loops const deprecatedUnrollLoopPattern = /#pragma unroll_loop[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g; const unrollLoopPattern = /#pragma unroll_loop_start\s+for\s*\(\s*int\s+i\s*=\s*(\d+)\s*;\s*i\s*<\s*(\d+)\s*;\s*i\s*\+\+\s*\)\s*{([\s\S]+?)}\s+#pragma unroll_loop_end/g; function unrollLoops( string ) { return string .replace( unrollLoopPattern, loopReplacer ) .replace( deprecatedUnrollLoopPattern, deprecatedLoopReplacer ); } function deprecatedLoopReplacer( match, start, end, snippet ) { console.warn( 'WebGLProgram: #pragma unroll_loop shader syntax is deprecated. Please use #pragma unroll_loop_start syntax instead.' ); return loopReplacer( match, start, end, snippet ); } function loopReplacer( match, start, end, snippet ) { let string = ''; for ( let i = parseInt( start ); i < parseInt( end ); i ++ ) { string += snippet .replace( /\[\s*i\s*\]/g, '[ ' + i + ' ]' ) .replace( /UNROLLED_LOOP_INDEX/g, i ); } return string; } // function generatePrecision( parameters ) { let precisionstring = 'precision ' + parameters.precision + ' float;\nprecision ' + parameters.precision + ' int;'; if ( parameters.precision === 'highp' ) { precisionstring += '\n#define HIGH_PRECISION'; } else if ( parameters.precision === 'mediump' ) { precisionstring += '\n#define MEDIUM_PRECISION'; } else if ( parameters.precision === 'lowp' ) { precisionstring += '\n#define LOW_PRECISION'; } return precisionstring; } function generateShadowMapTypeDefine( parameters ) { let shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC'; if ( parameters.shadowMapType === PCFShadowMap ) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF'; } else if ( parameters.shadowMapType === PCFSoftShadowMap ) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT'; } else if ( parameters.shadowMapType === VSMShadowMap ) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_VSM'; } return shadowMapTypeDefine; } function generateEnvMapTypeDefine( parameters ) { let envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; if ( parameters.envMap ) { switch ( parameters.envMapMode ) { case CubeReflectionMapping: case CubeRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; break; case CubeUVReflectionMapping: case CubeUVRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV'; break; } } return envMapTypeDefine; } function generateEnvMapModeDefine( parameters ) { let envMapModeDefine = 'ENVMAP_MODE_REFLECTION'; if ( parameters.envMap ) { switch ( parameters.envMapMode ) { case CubeRefractionMapping: case CubeUVRefractionMapping: envMapModeDefine = 'ENVMAP_MODE_REFRACTION'; break; } } return envMapModeDefine; } function generateEnvMapBlendingDefine( parameters ) { let envMapBlendingDefine = 'ENVMAP_BLENDING_NONE'; if ( parameters.envMap ) { switch ( parameters.combine ) { case MultiplyOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY'; break; case MixOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MIX'; break; case AddOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_ADD'; break; } } return envMapBlendingDefine; } function WebGLProgram( renderer, cacheKey, parameters, bindingStates ) { // TODO Send this event to Three.js DevTools // console.log( 'WebGLProgram', cacheKey ); const gl = renderer.getContext(); const defines = parameters.defines; let vertexShader = parameters.vertexShader; let fragmentShader = parameters.fragmentShader; const shadowMapTypeDefine = generateShadowMapTypeDefine( parameters ); const envMapTypeDefine = generateEnvMapTypeDefine( parameters ); const envMapModeDefine = generateEnvMapModeDefine( parameters ); const envMapBlendingDefine = generateEnvMapBlendingDefine( parameters ); const gammaFactorDefine = ( renderer.gammaFactor > 0 ) ? renderer.gammaFactor : 1.0; const customExtensions = parameters.isWebGL2 ? '' : generateExtensions( parameters ); const customDefines = generateDefines( defines ); const program = gl.createProgram(); let prefixVertex, prefixFragment; let versionString = parameters.glslVersion ? '#version ' + parameters.glslVersion + '\n' : ''; if ( parameters.isRawShaderMaterial ) { prefixVertex = [ customDefines ].filter( filterEmptyLine ).join( '\n' ); if ( prefixVertex.length > 0 ) { prefixVertex += '\n'; } prefixFragment = [ customExtensions, customDefines ].filter( filterEmptyLine ).join( '\n' ); if ( prefixFragment.length > 0 ) { prefixFragment += '\n'; } } else { prefixVertex = [ generatePrecision( parameters ), '#define SHADER_NAME ' + parameters.shaderName, customDefines, parameters.instancing ? '#define USE_INSTANCING' : '', parameters.instancingColor ? '#define USE_INSTANCING_COLOR' : '', parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '', '#define GAMMA_FACTOR ' + gammaFactorDefine, '#define MAX_BONES ' + parameters.maxBones, ( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '', ( parameters.useFog && parameters.fogExp2 ) ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', ( parameters.normalMap && parameters.objectSpaceNormalMap ) ? '#define OBJECTSPACE_NORMALMAP' : '', ( parameters.normalMap && parameters.tangentSpaceNormalMap ) ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.specularIntensityMap ? '#define USE_SPECULARINTENSITYMAP' : '', parameters.specularTintMap ? '#define USE_SPECULARTINTMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.skinning ? '#define USE_SKINNING' : '', parameters.useVertexTexture ? '#define BONE_TEXTURE' : '', parameters.morphTargets ? '#define USE_MORPHTARGETS' : '', parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', ( parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ) ? '#define USE_LOGDEPTHBUF_EXT' : '', 'uniform mat4 modelMatrix;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform mat4 viewMatrix;', 'uniform mat3 normalMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', '#ifdef USE_INSTANCING', ' attribute mat4 instanceMatrix;', '#endif', '#ifdef USE_INSTANCING_COLOR', ' attribute vec3 instanceColor;', '#endif', 'attribute vec3 position;', 'attribute vec3 normal;', 'attribute vec2 uv;', '#ifdef USE_TANGENT', ' attribute vec4 tangent;', '#endif', '#if defined( USE_COLOR_ALPHA )', ' attribute vec4 color;', '#elif defined( USE_COLOR )', ' attribute vec3 color;', '#endif', '#ifdef USE_MORPHTARGETS', ' attribute vec3 morphTarget0;', ' attribute vec3 morphTarget1;', ' attribute vec3 morphTarget2;', ' attribute vec3 morphTarget3;', ' #ifdef USE_MORPHNORMALS', ' attribute vec3 morphNormal0;', ' attribute vec3 morphNormal1;', ' attribute vec3 morphNormal2;', ' attribute vec3 morphNormal3;', ' #else', ' attribute vec3 morphTarget4;', ' attribute vec3 morphTarget5;', ' attribute vec3 morphTarget6;', ' attribute vec3 morphTarget7;', ' #endif', '#endif', '#ifdef USE_SKINNING', ' attribute vec4 skinIndex;', ' attribute vec4 skinWeight;', '#endif', '\n' ].filter( filterEmptyLine ).join( '\n' ); prefixFragment = [ customExtensions, generatePrecision( parameters ), '#define SHADER_NAME ' + parameters.shaderName, customDefines, '#define GAMMA_FACTOR ' + gammaFactorDefine, ( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '', ( parameters.useFog && parameters.fogExp2 ) ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.matcap ? '#define USE_MATCAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapTypeDefine : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.envMap ? '#define ' + envMapBlendingDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', ( parameters.normalMap && parameters.objectSpaceNormalMap ) ? '#define OBJECTSPACE_NORMALMAP' : '', ( parameters.normalMap && parameters.tangentSpaceNormalMap ) ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoat ? '#define USE_CLEARCOAT' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.specularIntensityMap ? '#define USE_SPECULARINTENSITYMAP' : '', parameters.specularTintMap ? '#define USE_SPECULARTINTMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.alphaTest ? '#define USE_ALPHATEST' : '', parameters.sheenTint ? '#define USE_SHEEN' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors || parameters.instancingColor ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.gradientMap ? '#define USE_GRADIENTMAP' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : '', parameters.physicallyCorrectLights ? '#define PHYSICALLY_CORRECT_LIGHTS' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', ( parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ) ? '#define USE_LOGDEPTHBUF_EXT' : '', ( ( parameters.extensionShaderTextureLOD || parameters.envMap ) && parameters.rendererExtensionShaderTextureLod ) ? '#define TEXTURE_LOD_EXT' : '', 'uniform mat4 viewMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', ( parameters.toneMapping !== NoToneMapping ) ? '#define TONE_MAPPING' : '', ( parameters.toneMapping !== NoToneMapping ) ? ShaderChunk[ 'tonemapping_pars_fragment' ] : '', // this code is required here because it is used by the toneMapping() function defined below ( parameters.toneMapping !== NoToneMapping ) ? getToneMappingFunction( 'toneMapping', parameters.toneMapping ) : '', parameters.dithering ? '#define DITHERING' : '', parameters.format === RGBFormat ? '#define OPAQUE' : '', ShaderChunk[ 'encodings_pars_fragment' ], // this code is required here because it is used by the various encoding/decoding function defined below parameters.map ? getTexelDecodingFunction( 'mapTexelToLinear', parameters.mapEncoding ) : '', parameters.matcap ? getTexelDecodingFunction( 'matcapTexelToLinear', parameters.matcapEncoding ) : '', parameters.envMap ? getTexelDecodingFunction( 'envMapTexelToLinear', parameters.envMapEncoding ) : '', parameters.emissiveMap ? getTexelDecodingFunction( 'emissiveMapTexelToLinear', parameters.emissiveMapEncoding ) : '', parameters.specularTintMap ? getTexelDecodingFunction( 'specularTintMapTexelToLinear', parameters.specularTintMapEncoding ) : '', parameters.lightMap ? getTexelDecodingFunction( 'lightMapTexelToLinear', parameters.lightMapEncoding ) : '', getTexelEncodingFunction( 'linearToOutputTexel', parameters.outputEncoding ), parameters.depthPacking ? '#define DEPTH_PACKING ' + parameters.depthPacking : '', '\n' ].filter( filterEmptyLine ).join( '\n' ); } vertexShader = resolveIncludes( vertexShader ); vertexShader = replaceLightNums( vertexShader, parameters ); vertexShader = replaceClippingPlaneNums( vertexShader, parameters ); fragmentShader = resolveIncludes( fragmentShader ); fragmentShader = replaceLightNums( fragmentShader, parameters ); fragmentShader = replaceClippingPlaneNums( fragmentShader, parameters ); vertexShader = unrollLoops( vertexShader ); fragmentShader = unrollLoops( fragmentShader ); if ( parameters.isWebGL2 && parameters.isRawShaderMaterial !== true ) { // GLSL 3.0 conversion for built-in materials and ShaderMaterial versionString = '#version 300 es\n'; prefixVertex = [ '#define attribute in', '#define varying out', '#define texture2D texture' ].join( '\n' ) + '\n' + prefixVertex; prefixFragment = [ '#define varying in', ( parameters.glslVersion === GLSL3 ) ? '' : 'out highp vec4 pc_fragColor;', ( parameters.glslVersion === GLSL3 ) ? '' : '#define gl_FragColor pc_fragColor', '#define gl_FragDepthEXT gl_FragDepth', '#define texture2D texture', '#define textureCube texture', '#define texture2DProj textureProj', '#define texture2DLodEXT textureLod', '#define texture2DProjLodEXT textureProjLod', '#define textureCubeLodEXT textureLod', '#define texture2DGradEXT textureGrad', '#define texture2DProjGradEXT textureProjGrad', '#define textureCubeGradEXT textureGrad' ].join( '\n' ) + '\n' + prefixFragment; } const vertexGlsl = versionString + prefixVertex + vertexShader; const fragmentGlsl = versionString + prefixFragment + fragmentShader; // console.log( '*VERTEX*', vertexGlsl ); // console.log( '*FRAGMENT*', fragmentGlsl ); const glVertexShader = WebGLShader( gl, 35633, vertexGlsl ); const glFragmentShader = WebGLShader( gl, 35632, fragmentGlsl ); gl.attachShader( program, glVertexShader ); gl.attachShader( program, glFragmentShader ); // Force a particular attribute to index 0. if ( parameters.index0AttributeName !== undefined ) { gl.bindAttribLocation( program, 0, parameters.index0AttributeName ); } else if ( parameters.morphTargets === true ) { // programs with morphTargets displace position out of attribute 0 gl.bindAttribLocation( program, 0, 'position' ); } gl.linkProgram( program ); // check for link errors if ( renderer.debug.checkShaderErrors ) { const programLog = gl.getProgramInfoLog( program ).trim(); const vertexLog = gl.getShaderInfoLog( glVertexShader ).trim(); const fragmentLog = gl.getShaderInfoLog( glFragmentShader ).trim(); let runnable = true; let haveDiagnostics = true; if ( gl.getProgramParameter( program, 35714 ) === false ) { runnable = false; const vertexErrors = getShaderErrors( gl, glVertexShader, 'vertex' ); const fragmentErrors = getShaderErrors( gl, glFragmentShader, 'fragment' ); console.error( 'THREE.WebGLProgram: Shader Error ' + gl.getError() + ' - ' + 'VALIDATE_STATUS ' + gl.getProgramParameter( program, 35715 ) + '\n\n' + 'Program Info Log: ' + programLog + '\n' + vertexErrors + '\n' + fragmentErrors ); } else if ( programLog !== '' ) { console.warn( 'THREE.WebGLProgram: Program Info Log:', programLog ); } else if ( vertexLog === '' || fragmentLog === '' ) { haveDiagnostics = false; } if ( haveDiagnostics ) { this.diagnostics = { runnable: runnable, programLog: programLog, vertexShader: { log: vertexLog, prefix: prefixVertex }, fragmentShader: { log: fragmentLog, prefix: prefixFragment } }; } } // Clean up // Crashes in iOS9 and iOS10. #18402 // gl.detachShader( program, glVertexShader ); // gl.detachShader( program, glFragmentShader ); gl.deleteShader( glVertexShader ); gl.deleteShader( glFragmentShader ); // set up caching for uniform locations let cachedUniforms; this.getUniforms = function () { if ( cachedUniforms === undefined ) { cachedUniforms = new WebGLUniforms( gl, program ); } return cachedUniforms; }; // set up caching for attribute locations let cachedAttributes; this.getAttributes = function () { if ( cachedAttributes === undefined ) { cachedAttributes = fetchAttributeLocations( gl, program ); } return cachedAttributes; }; // free resource this.destroy = function () { bindingStates.releaseStatesOfProgram( this ); gl.deleteProgram( program ); this.program = undefined; }; // this.name = parameters.shaderName; this.id = programIdCount ++; this.cacheKey = cacheKey; this.usedTimes = 1; this.program = program; this.vertexShader = glVertexShader; this.fragmentShader = glFragmentShader; return this; } function WebGLPrograms( renderer, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping ) { const programs = []; const isWebGL2 = capabilities.isWebGL2; const logarithmicDepthBuffer = capabilities.logarithmicDepthBuffer; const floatVertexTextures = capabilities.floatVertexTextures; const maxVertexUniforms = capabilities.maxVertexUniforms; const vertexTextures = capabilities.vertexTextures; let precision = capabilities.precision; const shaderIDs = { MeshDepthMaterial: 'depth', MeshDistanceMaterial: 'distanceRGBA', MeshNormalMaterial: 'normal', MeshBasicMaterial: 'basic', MeshLambertMaterial: 'lambert', MeshPhongMaterial: 'phong', MeshToonMaterial: 'toon', MeshStandardMaterial: 'physical', MeshPhysicalMaterial: 'physical', MeshMatcapMaterial: 'matcap', LineBasicMaterial: 'basic', LineDashedMaterial: 'dashed', PointsMaterial: 'points', ShadowMaterial: 'shadow', SpriteMaterial: 'sprite' }; const parameterNames = [ 'precision', 'isWebGL2', 'supportsVertexTextures', 'outputEncoding', 'instancing', 'instancingColor', 'map', 'mapEncoding', 'matcap', 'matcapEncoding', 'envMap', 'envMapMode', 'envMapEncoding', 'envMapCubeUV', 'lightMap', 'lightMapEncoding', 'aoMap', 'emissiveMap', 'emissiveMapEncoding', 'bumpMap', 'normalMap', 'objectSpaceNormalMap', 'tangentSpaceNormalMap', 'clearcoat', 'clearcoatMap', 'clearcoatRoughnessMap', 'clearcoatNormalMap', 'displacementMap', 'specularMap', 'specularIntensityMap', 'specularTintMap', 'specularTintMapEncoding', 'roughnessMap', 'metalnessMap', 'gradientMap', 'alphaMap', 'alphaTest', 'combine', 'vertexColors', 'vertexAlphas', 'vertexTangents', 'vertexUvs', 'uvsVertexOnly', 'fog', 'useFog', 'fogExp2', 'flatShading', 'sizeAttenuation', 'logarithmicDepthBuffer', 'skinning', 'maxBones', 'useVertexTexture', 'morphTargets', 'morphNormals', 'premultipliedAlpha', 'numDirLights', 'numPointLights', 'numSpotLights', 'numHemiLights', 'numRectAreaLights', 'numDirLightShadows', 'numPointLightShadows', 'numSpotLightShadows', 'shadowMapEnabled', 'shadowMapType', 'toneMapping', 'physicallyCorrectLights', 'doubleSided', 'flipSided', 'numClippingPlanes', 'numClipIntersection', 'depthPacking', 'dithering', 'format', 'sheenTint', 'transmission', 'transmissionMap', 'thicknessMap' ]; function getMaxBones( object ) { const skeleton = object.skeleton; const bones = skeleton.bones; if ( floatVertexTextures ) { return 1024; } else { // default for when object is not specified // ( for example when prebuilding shader to be used with multiple objects ) // // - leave some extra space for other uniforms // - limit here is ANGLE's 254 max uniform vectors // (up to 54 should be safe) const nVertexUniforms = maxVertexUniforms; const nVertexMatrices = Math.floor( ( nVertexUniforms - 20 ) / 4 ); const maxBones = Math.min( nVertexMatrices, bones.length ); if ( maxBones < bones.length ) { console.warn( 'THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.' ); return 0; } return maxBones; } } function getTextureEncodingFromMap( map ) { let encoding; if ( map && map.isTexture ) { encoding = map.encoding; } else if ( map && map.isWebGLRenderTarget ) { console.warn( 'THREE.WebGLPrograms.getTextureEncodingFromMap: don\'t use render targets as textures. Use their .texture property instead.' ); encoding = map.texture.encoding; } else { encoding = LinearEncoding; } return encoding; } function getParameters( material, lights, shadows, scene, object ) { const fog = scene.fog; const environment = material.isMeshStandardMaterial ? scene.environment : null; const envMap = ( material.isMeshStandardMaterial ? cubeuvmaps : cubemaps ).get( material.envMap || environment ); const shaderID = shaderIDs[ material.type ]; // heuristics to create shader parameters according to lights in the scene // (not to blow over maxLights budget) const maxBones = object.isSkinnedMesh ? getMaxBones( object ) : 0; if ( material.precision !== null ) { precision = capabilities.getMaxPrecision( material.precision ); if ( precision !== material.precision ) { console.warn( 'THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.' ); } } let vertexShader, fragmentShader; if ( shaderID ) { const shader = ShaderLib[ shaderID ]; vertexShader = shader.vertexShader; fragmentShader = shader.fragmentShader; } else { vertexShader = material.vertexShader; fragmentShader = material.fragmentShader; } const currentRenderTarget = renderer.getRenderTarget(); const useAlphaTest = material.alphaTest > 0; const useClearcoat = material.clearcoat > 0; const parameters = { isWebGL2: isWebGL2, shaderID: shaderID, shaderName: material.type, vertexShader: vertexShader, fragmentShader: fragmentShader, defines: material.defines, isRawShaderMaterial: material.isRawShaderMaterial === true, glslVersion: material.glslVersion, precision: precision, instancing: object.isInstancedMesh === true, instancingColor: object.isInstancedMesh === true && object.instanceColor !== null, supportsVertexTextures: vertexTextures, outputEncoding: ( currentRenderTarget !== null ) ? getTextureEncodingFromMap( currentRenderTarget.texture ) : renderer.outputEncoding, map: !! material.map, mapEncoding: getTextureEncodingFromMap( material.map ), matcap: !! material.matcap, matcapEncoding: getTextureEncodingFromMap( material.matcap ), envMap: !! envMap, envMapMode: envMap && envMap.mapping, envMapEncoding: getTextureEncodingFromMap( envMap ), envMapCubeUV: ( !! envMap ) && ( ( envMap.mapping === CubeUVReflectionMapping ) || ( envMap.mapping === CubeUVRefractionMapping ) ), lightMap: !! material.lightMap, lightMapEncoding: getTextureEncodingFromMap( material.lightMap ), aoMap: !! material.aoMap, emissiveMap: !! material.emissiveMap, emissiveMapEncoding: getTextureEncodingFromMap( material.emissiveMap ), bumpMap: !! material.bumpMap, normalMap: !! material.normalMap, objectSpaceNormalMap: material.normalMapType === ObjectSpaceNormalMap, tangentSpaceNormalMap: material.normalMapType === TangentSpaceNormalMap, clearcoat: useClearcoat, clearcoatMap: useClearcoat && !! material.clearcoatMap, clearcoatRoughnessMap: useClearcoat && !! material.clearcoatRoughnessMap, clearcoatNormalMap: useClearcoat && !! material.clearcoatNormalMap, displacementMap: !! material.displacementMap, roughnessMap: !! material.roughnessMap, metalnessMap: !! material.metalnessMap, specularMap: !! material.specularMap, specularIntensityMap: !! material.specularIntensityMap, specularTintMap: !! material.specularTintMap, specularTintMapEncoding: getTextureEncodingFromMap( material.specularTintMap ), alphaMap: !! material.alphaMap, alphaTest: useAlphaTest, gradientMap: !! material.gradientMap, sheenTint: ( !! material.sheenTint && ( material.sheenTint.r > 0 || material.sheenTint.g > 0 || material.sheenTint.b > 0 ) ), transmission: material.transmission > 0, transmissionMap: !! material.transmissionMap, thicknessMap: !! material.thicknessMap, combine: material.combine, vertexTangents: ( !! material.normalMap && !! object.geometry && !! object.geometry.attributes.tangent ), vertexColors: material.vertexColors, vertexAlphas: material.vertexColors === true && !! object.geometry && !! object.geometry.attributes.color && object.geometry.attributes.color.itemSize === 4, vertexUvs: !! material.map || !! material.bumpMap || !! material.normalMap || !! material.specularMap || !! material.alphaMap || !! material.emissiveMap || !! material.roughnessMap || !! material.metalnessMap || !! material.clearcoatMap || !! material.clearcoatRoughnessMap || !! material.clearcoatNormalMap || !! material.displacementMap || !! material.transmissionMap || !! material.thicknessMap || !! material.specularIntensityMap || !! material.specularTintMap, uvsVertexOnly: ! ( !! material.map || !! material.bumpMap || !! material.normalMap || !! material.specularMap || !! material.alphaMap || !! material.emissiveMap || !! material.roughnessMap || !! material.metalnessMap || !! material.clearcoatNormalMap || material.transmission > 0 || !! material.transmissionMap || !! material.thicknessMap || !! material.specularIntensityMap || !! material.specularTintMap ) && !! material.displacementMap, fog: !! fog, useFog: material.fog, fogExp2: ( fog && fog.isFogExp2 ), flatShading: !! material.flatShading, sizeAttenuation: material.sizeAttenuation, logarithmicDepthBuffer: logarithmicDepthBuffer, skinning: object.isSkinnedMesh === true && maxBones > 0, maxBones: maxBones, useVertexTexture: floatVertexTextures, morphTargets: !! object.geometry && !! object.geometry.morphAttributes.position, morphNormals: !! object.geometry && !! object.geometry.morphAttributes.normal, numDirLights: lights.directional.length, numPointLights: lights.point.length, numSpotLights: lights.spot.length, numRectAreaLights: lights.rectArea.length, numHemiLights: lights.hemi.length, numDirLightShadows: lights.directionalShadowMap.length, numPointLightShadows: lights.pointShadowMap.length, numSpotLightShadows: lights.spotShadowMap.length, numClippingPlanes: clipping.numPlanes, numClipIntersection: clipping.numIntersection, format: material.format, dithering: material.dithering, shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0, shadowMapType: renderer.shadowMap.type, toneMapping: material.toneMapped ? renderer.toneMapping : NoToneMapping, physicallyCorrectLights: renderer.physicallyCorrectLights, premultipliedAlpha: material.premultipliedAlpha, doubleSided: material.side === DoubleSide, flipSided: material.side === BackSide, depthPacking: ( material.depthPacking !== undefined ) ? material.depthPacking : false, index0AttributeName: material.index0AttributeName, extensionDerivatives: material.extensions && material.extensions.derivatives, extensionFragDepth: material.extensions && material.extensions.fragDepth, extensionDrawBuffers: material.extensions && material.extensions.drawBuffers, extensionShaderTextureLOD: material.extensions && material.extensions.shaderTextureLOD, rendererExtensionFragDepth: isWebGL2 || extensions.has( 'EXT_frag_depth' ), rendererExtensionDrawBuffers: isWebGL2 || extensions.has( 'WEBGL_draw_buffers' ), rendererExtensionShaderTextureLod: isWebGL2 || extensions.has( 'EXT_shader_texture_lod' ), customProgramCacheKey: material.customProgramCacheKey() }; return parameters; } function getProgramCacheKey( parameters ) { const array = []; if ( parameters.shaderID ) { array.push( parameters.shaderID ); } else { array.push( parameters.fragmentShader ); array.push( parameters.vertexShader ); } if ( parameters.defines !== undefined ) { for ( const name in parameters.defines ) { array.push( name ); array.push( parameters.defines[ name ] ); } } if ( parameters.isRawShaderMaterial === false ) { for ( let i = 0; i < parameterNames.length; i ++ ) { array.push( parameters[ parameterNames[ i ] ] ); } array.push( renderer.outputEncoding ); array.push( renderer.gammaFactor ); } array.push( parameters.customProgramCacheKey ); return array.join(); } function getUniforms( material ) { const shaderID = shaderIDs[ material.type ]; let uniforms; if ( shaderID ) { const shader = ShaderLib[ shaderID ]; uniforms = UniformsUtils.clone( shader.uniforms ); } else { uniforms = material.uniforms; } return uniforms; } function acquireProgram( parameters, cacheKey ) { let program; // Check if code has been already compiled for ( let p = 0, pl = programs.length; p < pl; p ++ ) { const preexistingProgram = programs[ p ]; if ( preexistingProgram.cacheKey === cacheKey ) { program = preexistingProgram; ++ program.usedTimes; break; } } if ( program === undefined ) { program = new WebGLProgram( renderer, cacheKey, parameters, bindingStates ); programs.push( program ); } return program; } function releaseProgram( program ) { if ( -- program.usedTimes === 0 ) { // Remove from unordered set const i = programs.indexOf( program ); programs[ i ] = programs[ programs.length - 1 ]; programs.pop(); // Free WebGL resources program.destroy(); } } return { getParameters: getParameters, getProgramCacheKey: getProgramCacheKey, getUniforms: getUniforms, acquireProgram: acquireProgram, releaseProgram: releaseProgram, // Exposed for resource monitoring & error feedback via renderer.info: programs: programs }; } function WebGLProperties() { let properties = new WeakMap(); function get( object ) { let map = properties.get( object ); if ( map === undefined ) { map = {}; properties.set( object, map ); } return map; } function remove( object ) { properties.delete( object ); } function update( object, key, value ) { properties.get( object )[ key ] = value; } function dispose() { properties = new WeakMap(); } return { get: get, remove: remove, update: update, dispose: dispose }; } function painterSortStable( a, b ) { if ( a.groupOrder !== b.groupOrder ) { return a.groupOrder - b.groupOrder; } else if ( a.renderOrder !== b.renderOrder ) { return a.renderOrder - b.renderOrder; } else if ( a.program !== b.program ) { return a.program.id - b.program.id; } else if ( a.material.id !== b.material.id ) { return a.material.id - b.material.id; } else if ( a.z !== b.z ) { return a.z - b.z; } else { return a.id - b.id; } } function reversePainterSortStable( a, b ) { if ( a.groupOrder !== b.groupOrder ) { return a.groupOrder - b.groupOrder; } else if ( a.renderOrder !== b.renderOrder ) { return a.renderOrder - b.renderOrder; } else if ( a.z !== b.z ) { return b.z - a.z; } else { return a.id - b.id; } } function WebGLRenderList( properties ) { const renderItems = []; let renderItemsIndex = 0; const opaque = []; const transmissive = []; const transparent = []; const defaultProgram = { id: - 1 }; function init() { renderItemsIndex = 0; opaque.length = 0; transmissive.length = 0; transparent.length = 0; } function getNextRenderItem( object, geometry, material, groupOrder, z, group ) { let renderItem = renderItems[ renderItemsIndex ]; const materialProperties = properties.get( material ); if ( renderItem === undefined ) { renderItem = { id: object.id, object: object, geometry: geometry, material: material, program: materialProperties.program || defaultProgram, groupOrder: groupOrder, renderOrder: object.renderOrder, z: z, group: group }; renderItems[ renderItemsIndex ] = renderItem; } else { renderItem.id = object.id; renderItem.object = object; renderItem.geometry = geometry; renderItem.material = material; renderItem.program = materialProperties.program || defaultProgram; renderItem.groupOrder = groupOrder; renderItem.renderOrder = object.renderOrder; renderItem.z = z; renderItem.group = group; } renderItemsIndex ++; return renderItem; } function push( object, geometry, material, groupOrder, z, group ) { const renderItem = getNextRenderItem( object, geometry, material, groupOrder, z, group ); if ( material.transmission > 0.0 ) { transmissive.push( renderItem ); } else if ( material.transparent === true ) { transparent.push( renderItem ); } else { opaque.push( renderItem ); } } function unshift( object, geometry, material, groupOrder, z, group ) { const renderItem = getNextRenderItem( object, geometry, material, groupOrder, z, group ); if ( material.transmission > 0.0 ) { transmissive.unshift( renderItem ); } else if ( material.transparent === true ) { transparent.unshift( renderItem ); } else { opaque.unshift( renderItem ); } } function sort( customOpaqueSort, customTransparentSort ) { if ( opaque.length > 1 ) opaque.sort( customOpaqueSort || painterSortStable ); if ( transmissive.length > 1 ) transmissive.sort( customTransparentSort || reversePainterSortStable ); if ( transparent.length > 1 ) transparent.sort( customTransparentSort || reversePainterSortStable ); } function finish() { // Clear references from inactive renderItems in the list for ( let i = renderItemsIndex, il = renderItems.length; i < il; i ++ ) { const renderItem = renderItems[ i ]; if ( renderItem.id === null ) break; renderItem.id = null; renderItem.object = null; renderItem.geometry = null; renderItem.material = null; renderItem.program = null; renderItem.group = null; } } return { opaque: opaque, transmissive: transmissive, transparent: transparent, init: init, push: push, unshift: unshift, finish: finish, sort: sort }; } function WebGLRenderLists( properties ) { let lists = new WeakMap(); function get( scene, renderCallDepth ) { let list; if ( lists.has( scene ) === false ) { list = new WebGLRenderList( properties ); lists.set( scene, [ list ] ); } else { if ( renderCallDepth >= lists.get( scene ).length ) { list = new WebGLRenderList( properties ); lists.get( scene ).push( list ); } else { list = lists.get( scene )[ renderCallDepth ]; } } return list; } function dispose() { lists = new WeakMap(); } return { get: get, dispose: dispose }; } function UniformsCache() { const lights = {}; return { get: function ( light ) { if ( lights[ light.id ] !== undefined ) { return lights[ light.id ]; } let uniforms; switch ( light.type ) { case 'DirectionalLight': uniforms = { direction: new Vector3(), color: new Color() }; break; case 'SpotLight': uniforms = { position: new Vector3(), direction: new Vector3(), color: new Color(), distance: 0, coneCos: 0, penumbraCos: 0, decay: 0 }; break; case 'PointLight': uniforms = { position: new Vector3(), color: new Color(), distance: 0, decay: 0 }; break; case 'HemisphereLight': uniforms = { direction: new Vector3(), skyColor: new Color(), groundColor: new Color() }; break; case 'RectAreaLight': uniforms = { color: new Color(), position: new Vector3(), halfWidth: new Vector3(), halfHeight: new Vector3() }; break; } lights[ light.id ] = uniforms; return uniforms; } }; } function ShadowUniformsCache() { const lights = {}; return { get: function ( light ) { if ( lights[ light.id ] !== undefined ) { return lights[ light.id ]; } let uniforms; switch ( light.type ) { case 'DirectionalLight': uniforms = { shadowBias: 0, shadowNormalBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() }; break; case 'SpotLight': uniforms = { shadowBias: 0, shadowNormalBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() }; break; case 'PointLight': uniforms = { shadowBias: 0, shadowNormalBias: 0, shadowRadius: 1, shadowMapSize: new Vector2(), shadowCameraNear: 1, shadowCameraFar: 1000 }; break; // TODO (abelnation): set RectAreaLight shadow uniforms } lights[ light.id ] = uniforms; return uniforms; } }; } let nextVersion = 0; function shadowCastingLightsFirst( lightA, lightB ) { return ( lightB.castShadow ? 1 : 0 ) - ( lightA.castShadow ? 1 : 0 ); } function WebGLLights( extensions, capabilities ) { const cache = new UniformsCache(); const shadowCache = ShadowUniformsCache(); const state = { version: 0, hash: { directionalLength: - 1, pointLength: - 1, spotLength: - 1, rectAreaLength: - 1, hemiLength: - 1, numDirectionalShadows: - 1, numPointShadows: - 1, numSpotShadows: - 1 }, ambient: [ 0, 0, 0 ], probe: [], directional: [], directionalShadow: [], directionalShadowMap: [], directionalShadowMatrix: [], spot: [], spotShadow: [], spotShadowMap: [], spotShadowMatrix: [], rectArea: [], rectAreaLTC1: null, rectAreaLTC2: null, point: [], pointShadow: [], pointShadowMap: [], pointShadowMatrix: [], hemi: [] }; for ( let i = 0; i < 9; i ++ ) state.probe.push( new Vector3() ); const vector3 = new Vector3(); const matrix4 = new Matrix4(); const matrix42 = new Matrix4(); function setup( lights, physicallyCorrectLights ) { let r = 0, g = 0, b = 0; for ( let i = 0; i < 9; i ++ ) state.probe[ i ].set( 0, 0, 0 ); let directionalLength = 0; let pointLength = 0; let spotLength = 0; let rectAreaLength = 0; let hemiLength = 0; let numDirectionalShadows = 0; let numPointShadows = 0; let numSpotShadows = 0; lights.sort( shadowCastingLightsFirst ); // artist-friendly light intensity scaling factor const scaleFactor = ( physicallyCorrectLights !== true ) ? Math.PI : 1; for ( let i = 0, l = lights.length; i < l; i ++ ) { const light = lights[ i ]; const color = light.color; const intensity = light.intensity; const distance = light.distance; const shadowMap = ( light.shadow && light.shadow.map ) ? light.shadow.map.texture : null; if ( light.isAmbientLight ) { r += color.r * intensity * scaleFactor; g += color.g * intensity * scaleFactor; b += color.b * intensity * scaleFactor; } else if ( light.isLightProbe ) { for ( let j = 0; j < 9; j ++ ) { state.probe[ j ].addScaledVector( light.sh.coefficients[ j ], intensity ); } } else if ( light.isDirectionalLight ) { const uniforms = cache.get( light ); uniforms.color.copy( light.color ).multiplyScalar( light.intensity * scaleFactor ); if ( light.castShadow ) { const shadow = light.shadow; const shadowUniforms = shadowCache.get( light ); shadowUniforms.shadowBias = shadow.bias; shadowUniforms.shadowNormalBias = shadow.normalBias; shadowUniforms.shadowRadius = shadow.radius; shadowUniforms.shadowMapSize = shadow.mapSize; state.directionalShadow[ directionalLength ] = shadowUniforms; state.directionalShadowMap[ directionalLength ] = shadowMap; state.directionalShadowMatrix[ directionalLength ] = light.shadow.matrix; numDirectionalShadows ++; } state.directional[ directionalLength ] = uniforms; directionalLength ++; } else if ( light.isSpotLight ) { const uniforms = cache.get( light ); uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.color.copy( color ).multiplyScalar( intensity * scaleFactor ); uniforms.distance = distance; uniforms.coneCos = Math.cos( light.angle ); uniforms.penumbraCos = Math.cos( light.angle * ( 1 - light.penumbra ) ); uniforms.decay = light.decay; if ( light.castShadow ) { const shadow = light.shadow; const shadowUniforms = shadowCache.get( light ); shadowUniforms.shadowBias = shadow.bias; shadowUniforms.shadowNormalBias = shadow.normalBias; shadowUniforms.shadowRadius = shadow.radius; shadowUniforms.shadowMapSize = shadow.mapSize; state.spotShadow[ spotLength ] = shadowUniforms; state.spotShadowMap[ spotLength ] = shadowMap; state.spotShadowMatrix[ spotLength ] = light.shadow.matrix; numSpotShadows ++; } state.spot[ spotLength ] = uniforms; spotLength ++; } else if ( light.isRectAreaLight ) { const uniforms = cache.get( light ); // (a) intensity is the total visible light emitted //uniforms.color.copy( color ).multiplyScalar( intensity / ( light.width * light.height * Math.PI ) ); // (b) intensity is the brightness of the light uniforms.color.copy( color ).multiplyScalar( intensity ); uniforms.halfWidth.set( light.width * 0.5, 0.0, 0.0 ); uniforms.halfHeight.set( 0.0, light.height * 0.5, 0.0 ); state.rectArea[ rectAreaLength ] = uniforms; rectAreaLength ++; } else if ( light.isPointLight ) { const uniforms = cache.get( light ); uniforms.color.copy( light.color ).multiplyScalar( light.intensity * scaleFactor ); uniforms.distance = light.distance; uniforms.decay = light.decay; if ( light.castShadow ) { const shadow = light.shadow; const shadowUniforms = shadowCache.get( light ); shadowUniforms.shadowBias = shadow.bias; shadowUniforms.shadowNormalBias = shadow.normalBias; shadowUniforms.shadowRadius = shadow.radius; shadowUniforms.shadowMapSize = shadow.mapSize; shadowUniforms.shadowCameraNear = shadow.camera.near; shadowUniforms.shadowCameraFar = shadow.camera.far; state.pointShadow[ pointLength ] = shadowUniforms; state.pointShadowMap[ pointLength ] = shadowMap; state.pointShadowMatrix[ pointLength ] = light.shadow.matrix; numPointShadows ++; } state.point[ pointLength ] = uniforms; pointLength ++; } else if ( light.isHemisphereLight ) { const uniforms = cache.get( light ); uniforms.skyColor.copy( light.color ).multiplyScalar( intensity * scaleFactor ); uniforms.groundColor.copy( light.groundColor ).multiplyScalar( intensity * scaleFactor ); state.hemi[ hemiLength ] = uniforms; hemiLength ++; } } if ( rectAreaLength > 0 ) { if ( capabilities.isWebGL2 ) { // WebGL 2 state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1; state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2; } else { // WebGL 1 if ( extensions.has( 'OES_texture_float_linear' ) === true ) { state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1; state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2; } else if ( extensions.has( 'OES_texture_half_float_linear' ) === true ) { state.rectAreaLTC1 = UniformsLib.LTC_HALF_1; state.rectAreaLTC2 = UniformsLib.LTC_HALF_2; } else { console.error( 'THREE.WebGLRenderer: Unable to use RectAreaLight. Missing WebGL extensions.' ); } } } state.ambient[ 0 ] = r; state.ambient[ 1 ] = g; state.ambient[ 2 ] = b; const hash = state.hash; if ( hash.directionalLength !== directionalLength || hash.pointLength !== pointLength || hash.spotLength !== spotLength || hash.rectAreaLength !== rectAreaLength || hash.hemiLength !== hemiLength || hash.numDirectionalShadows !== numDirectionalShadows || hash.numPointShadows !== numPointShadows || hash.numSpotShadows !== numSpotShadows ) { state.directional.length = directionalLength; state.spot.length = spotLength; state.rectArea.length = rectAreaLength; state.point.length = pointLength; state.hemi.length = hemiLength; state.directionalShadow.length = numDirectionalShadows; state.directionalShadowMap.length = numDirectionalShadows; state.pointShadow.length = numPointShadows; state.pointShadowMap.length = numPointShadows; state.spotShadow.length = numSpotShadows; state.spotShadowMap.length = numSpotShadows; state.directionalShadowMatrix.length = numDirectionalShadows; state.pointShadowMatrix.length = numPointShadows; state.spotShadowMatrix.length = numSpotShadows; hash.directionalLength = directionalLength; hash.pointLength = pointLength; hash.spotLength = spotLength; hash.rectAreaLength = rectAreaLength; hash.hemiLength = hemiLength; hash.numDirectionalShadows = numDirectionalShadows; hash.numPointShadows = numPointShadows; hash.numSpotShadows = numSpotShadows; state.version = nextVersion ++; } } function setupView( lights, camera ) { let directionalLength = 0; let pointLength = 0; let spotLength = 0; let rectAreaLength = 0; let hemiLength = 0; const viewMatrix = camera.matrixWorldInverse; for ( let i = 0, l = lights.length; i < l; i ++ ) { const light = lights[ i ]; if ( light.isDirectionalLight ) { const uniforms = state.directional[ directionalLength ]; uniforms.direction.setFromMatrixPosition( light.matrixWorld ); vector3.setFromMatrixPosition( light.target.matrixWorld ); uniforms.direction.sub( vector3 ); uniforms.direction.transformDirection( viewMatrix ); directionalLength ++; } else if ( light.isSpotLight ) { const uniforms = state.spot[ spotLength ]; uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.position.applyMatrix4( viewMatrix ); uniforms.direction.setFromMatrixPosition( light.matrixWorld ); vector3.setFromMatrixPosition( light.target.matrixWorld ); uniforms.direction.sub( vector3 ); uniforms.direction.transformDirection( viewMatrix ); spotLength ++; } else if ( light.isRectAreaLight ) { const uniforms = state.rectArea[ rectAreaLength ]; uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.position.applyMatrix4( viewMatrix ); // extract local rotation of light to derive width/height half vectors matrix42.identity(); matrix4.copy( light.matrixWorld ); matrix4.premultiply( viewMatrix ); matrix42.extractRotation( matrix4 ); uniforms.halfWidth.set( light.width * 0.5, 0.0, 0.0 ); uniforms.halfHeight.set( 0.0, light.height * 0.5, 0.0 ); uniforms.halfWidth.applyMatrix4( matrix42 ); uniforms.halfHeight.applyMatrix4( matrix42 ); rectAreaLength ++; } else if ( light.isPointLight ) { const uniforms = state.point[ pointLength ]; uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.position.applyMatrix4( viewMatrix ); pointLength ++; } else if ( light.isHemisphereLight ) { const uniforms = state.hemi[ hemiLength ]; uniforms.direction.setFromMatrixPosition( light.matrixWorld ); uniforms.direction.transformDirection( viewMatrix ); uniforms.direction.normalize(); hemiLength ++; } } } return { setup: setup, setupView: setupView, state: state }; } function WebGLRenderState( extensions, capabilities ) { const lights = new WebGLLights( extensions, capabilities ); const lightsArray = []; const shadowsArray = []; function init() { lightsArray.length = 0; shadowsArray.length = 0; } function pushLight( light ) { lightsArray.push( light ); } function pushShadow( shadowLight ) { shadowsArray.push( shadowLight ); } function setupLights( physicallyCorrectLights ) { lights.setup( lightsArray, physicallyCorrectLights ); } function setupLightsView( camera ) { lights.setupView( lightsArray, camera ); } const state = { lightsArray: lightsArray, shadowsArray: shadowsArray, lights: lights }; return { init: init, state: state, setupLights: setupLights, setupLightsView: setupLightsView, pushLight: pushLight, pushShadow: pushShadow }; } function WebGLRenderStates( extensions, capabilities ) { let renderStates = new WeakMap(); function get( scene, renderCallDepth = 0 ) { let renderState; if ( renderStates.has( scene ) === false ) { renderState = new WebGLRenderState( extensions, capabilities ); renderStates.set( scene, [ renderState ] ); } else { if ( renderCallDepth >= renderStates.get( scene ).length ) { renderState = new WebGLRenderState( extensions, capabilities ); renderStates.get( scene ).push( renderState ); } else { renderState = renderStates.get( scene )[ renderCallDepth ]; } } return renderState; } function dispose() { renderStates = new WeakMap(); } return { get: get, dispose: dispose }; } /** * parameters = { * * opacity: , * * map: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * wireframe: , * wireframeLinewidth: * } */ class MeshDepthMaterial extends Material { constructor( parameters ) { super(); this.type = 'MeshDepthMaterial'; this.depthPacking = BasicDepthPacking; this.map = null; this.alphaMap = null; this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.wireframe = false; this.wireframeLinewidth = 1; this.fog = false; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.depthPacking = source.depthPacking; this.map = source.map; this.alphaMap = source.alphaMap; this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; return this; } } MeshDepthMaterial.prototype.isMeshDepthMaterial = true; /** * parameters = { * * referencePosition: , * nearDistance: , * farDistance: , * * map: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: * * } */ class MeshDistanceMaterial extends Material { constructor( parameters ) { super(); this.type = 'MeshDistanceMaterial'; this.referencePosition = new Vector3(); this.nearDistance = 1; this.farDistance = 1000; this.map = null; this.alphaMap = null; this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.fog = false; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.referencePosition.copy( source.referencePosition ); this.nearDistance = source.nearDistance; this.farDistance = source.farDistance; this.map = source.map; this.alphaMap = source.alphaMap; this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; return this; } } MeshDistanceMaterial.prototype.isMeshDistanceMaterial = true; var vsm_frag = "uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\nuniform float samples;\n#include \nvoid main() {\n\tfloat mean = 0.0;\n\tfloat squared_mean = 0.0;\n\tfloat uvStride = samples <= 1.0 ? 0.0 : 2.0 / ( samples - 1.0 );\n\tfloat uvStart = samples <= 1.0 ? 0.0 : - 1.0;\n\tfor ( float i = 0.0; i < samples; i ++ ) {\n\t\tfloat uvOffset = uvStart + i * uvStride;\n\t\t#ifdef HORIZONTAL_PASS\n\t\t\tvec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( uvOffset, 0.0 ) * radius ) / resolution ) );\n\t\t\tmean += distribution.x;\n\t\t\tsquared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n\t\t#else\n\t\t\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0, uvOffset ) * radius ) / resolution ) );\n\t\t\tmean += depth;\n\t\t\tsquared_mean += depth * depth;\n\t\t#endif\n\t}\n\tmean = mean / samples;\n\tsquared_mean = squared_mean / samples;\n\tfloat std_dev = sqrt( squared_mean - mean * mean );\n\tgl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}"; var vsm_vert = "void main() {\n\tgl_Position = vec4( position, 1.0 );\n}"; function WebGLShadowMap( _renderer, _objects, _capabilities ) { let _frustum = new Frustum(); const _shadowMapSize = new Vector2(), _viewportSize = new Vector2(), _viewport = new Vector4(), _depthMaterial = new MeshDepthMaterial( { depthPacking: RGBADepthPacking } ), _distanceMaterial = new MeshDistanceMaterial(), _materialCache = {}, _maxTextureSize = _capabilities.maxTextureSize; const shadowSide = { 0: BackSide, 1: FrontSide, 2: DoubleSide }; const shadowMaterialVertical = new ShaderMaterial( { uniforms: { shadow_pass: { value: null }, resolution: { value: new Vector2() }, radius: { value: 4.0 }, samples: { value: 8.0 } }, vertexShader: vsm_vert, fragmentShader: vsm_frag } ); const shadowMaterialHorizontal = shadowMaterialVertical.clone(); shadowMaterialHorizontal.defines.HORIZONTAL_PASS = 1; const fullScreenTri = new BufferGeometry(); fullScreenTri.setAttribute( 'position', new BufferAttribute( new Float32Array( [ - 1, - 1, 0.5, 3, - 1, 0.5, - 1, 3, 0.5 ] ), 3 ) ); const fullScreenMesh = new Mesh( fullScreenTri, shadowMaterialVertical ); const scope = this; this.enabled = false; this.autoUpdate = true; this.needsUpdate = false; this.type = PCFShadowMap; this.render = function ( lights, scene, camera ) { if ( scope.enabled === false ) return; if ( scope.autoUpdate === false && scope.needsUpdate === false ) return; if ( lights.length === 0 ) return; const currentRenderTarget = _renderer.getRenderTarget(); const activeCubeFace = _renderer.getActiveCubeFace(); const activeMipmapLevel = _renderer.getActiveMipmapLevel(); const _state = _renderer.state; // Set GL state for depth map. _state.setBlending( NoBlending ); _state.buffers.color.setClear( 1, 1, 1, 1 ); _state.buffers.depth.setTest( true ); _state.setScissorTest( false ); // render depth map for ( let i = 0, il = lights.length; i < il; i ++ ) { const light = lights[ i ]; const shadow = light.shadow; if ( shadow === undefined ) { console.warn( 'THREE.WebGLShadowMap:', light, 'has no shadow.' ); continue; } if ( shadow.autoUpdate === false && shadow.needsUpdate === false ) continue; _shadowMapSize.copy( shadow.mapSize ); const shadowFrameExtents = shadow.getFrameExtents(); _shadowMapSize.multiply( shadowFrameExtents ); _viewportSize.copy( shadow.mapSize ); if ( _shadowMapSize.x > _maxTextureSize || _shadowMapSize.y > _maxTextureSize ) { if ( _shadowMapSize.x > _maxTextureSize ) { _viewportSize.x = Math.floor( _maxTextureSize / shadowFrameExtents.x ); _shadowMapSize.x = _viewportSize.x * shadowFrameExtents.x; shadow.mapSize.x = _viewportSize.x; } if ( _shadowMapSize.y > _maxTextureSize ) { _viewportSize.y = Math.floor( _maxTextureSize / shadowFrameExtents.y ); _shadowMapSize.y = _viewportSize.y * shadowFrameExtents.y; shadow.mapSize.y = _viewportSize.y; } } if ( shadow.map === null && ! shadow.isPointLightShadow && this.type === VSMShadowMap ) { const pars = { minFilter: LinearFilter, magFilter: LinearFilter, format: RGBAFormat }; shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars ); shadow.map.texture.name = light.name + '.shadowMap'; shadow.mapPass = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars ); shadow.camera.updateProjectionMatrix(); } if ( shadow.map === null ) { const pars = { minFilter: NearestFilter, magFilter: NearestFilter, format: RGBAFormat }; shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars ); shadow.map.texture.name = light.name + '.shadowMap'; shadow.camera.updateProjectionMatrix(); } _renderer.setRenderTarget( shadow.map ); _renderer.clear(); const viewportCount = shadow.getViewportCount(); for ( let vp = 0; vp < viewportCount; vp ++ ) { const viewport = shadow.getViewport( vp ); _viewport.set( _viewportSize.x * viewport.x, _viewportSize.y * viewport.y, _viewportSize.x * viewport.z, _viewportSize.y * viewport.w ); _state.viewport( _viewport ); shadow.updateMatrices( light, vp ); _frustum = shadow.getFrustum(); renderObject( scene, camera, shadow.camera, light, this.type ); } // do blur pass for VSM if ( ! shadow.isPointLightShadow && this.type === VSMShadowMap ) { VSMPass( shadow, camera ); } shadow.needsUpdate = false; } scope.needsUpdate = false; _renderer.setRenderTarget( currentRenderTarget, activeCubeFace, activeMipmapLevel ); }; function VSMPass( shadow, camera ) { const geometry = _objects.update( fullScreenMesh ); // vertical pass shadowMaterialVertical.uniforms.shadow_pass.value = shadow.map.texture; shadowMaterialVertical.uniforms.resolution.value = shadow.mapSize; shadowMaterialVertical.uniforms.radius.value = shadow.radius; shadowMaterialVertical.uniforms.samples.value = shadow.blurSamples; _renderer.setRenderTarget( shadow.mapPass ); _renderer.clear(); _renderer.renderBufferDirect( camera, null, geometry, shadowMaterialVertical, fullScreenMesh, null ); // horizontal pass shadowMaterialHorizontal.uniforms.shadow_pass.value = shadow.mapPass.texture; shadowMaterialHorizontal.uniforms.resolution.value = shadow.mapSize; shadowMaterialHorizontal.uniforms.radius.value = shadow.radius; shadowMaterialHorizontal.uniforms.samples.value = shadow.blurSamples; _renderer.setRenderTarget( shadow.map ); _renderer.clear(); _renderer.renderBufferDirect( camera, null, geometry, shadowMaterialHorizontal, fullScreenMesh, null ); } function getDepthMaterial( object, geometry, material, light, shadowCameraNear, shadowCameraFar, type ) { let result = null; const customMaterial = ( light.isPointLight === true ) ? object.customDistanceMaterial : object.customDepthMaterial; if ( customMaterial !== undefined ) { result = customMaterial; } else { result = ( light.isPointLight === true ) ? _distanceMaterial : _depthMaterial; } if ( ( _renderer.localClippingEnabled && material.clipShadows === true && material.clippingPlanes.length !== 0 ) || ( material.displacementMap && material.displacementScale !== 0 ) || ( material.alphaMap && material.alphaTest > 0 ) ) { // in this case we need a unique material instance reflecting the // appropriate state const keyA = result.uuid, keyB = material.uuid; let materialsForVariant = _materialCache[ keyA ]; if ( materialsForVariant === undefined ) { materialsForVariant = {}; _materialCache[ keyA ] = materialsForVariant; } let cachedMaterial = materialsForVariant[ keyB ]; if ( cachedMaterial === undefined ) { cachedMaterial = result.clone(); materialsForVariant[ keyB ] = cachedMaterial; } result = cachedMaterial; } result.visible = material.visible; result.wireframe = material.wireframe; if ( type === VSMShadowMap ) { result.side = ( material.shadowSide !== null ) ? material.shadowSide : material.side; } else { result.side = ( material.shadowSide !== null ) ? material.shadowSide : shadowSide[ material.side ]; } result.alphaMap = material.alphaMap; result.alphaTest = material.alphaTest; result.clipShadows = material.clipShadows; result.clippingPlanes = material.clippingPlanes; result.clipIntersection = material.clipIntersection; result.displacementMap = material.displacementMap; result.displacementScale = material.displacementScale; result.displacementBias = material.displacementBias; result.wireframeLinewidth = material.wireframeLinewidth; result.linewidth = material.linewidth; if ( light.isPointLight === true && result.isMeshDistanceMaterial === true ) { result.referencePosition.setFromMatrixPosition( light.matrixWorld ); result.nearDistance = shadowCameraNear; result.farDistance = shadowCameraFar; } return result; } function renderObject( object, camera, shadowCamera, light, type ) { if ( object.visible === false ) return; const visible = object.layers.test( camera.layers ); if ( visible && ( object.isMesh || object.isLine || object.isPoints ) ) { if ( ( object.castShadow || ( object.receiveShadow && type === VSMShadowMap ) ) && ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) ) { object.modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld ); const geometry = _objects.update( object ); const material = object.material; if ( Array.isArray( material ) ) { const groups = geometry.groups; for ( let k = 0, kl = groups.length; k < kl; k ++ ) { const group = groups[ k ]; const groupMaterial = material[ group.materialIndex ]; if ( groupMaterial && groupMaterial.visible ) { const depthMaterial = getDepthMaterial( object, geometry, groupMaterial, light, shadowCamera.near, shadowCamera.far, type ); _renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, group ); } } } else if ( material.visible ) { const depthMaterial = getDepthMaterial( object, geometry, material, light, shadowCamera.near, shadowCamera.far, type ); _renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, null ); } } } const children = object.children; for ( let i = 0, l = children.length; i < l; i ++ ) { renderObject( children[ i ], camera, shadowCamera, light, type ); } } } function WebGLState( gl, extensions, capabilities ) { const isWebGL2 = capabilities.isWebGL2; function ColorBuffer() { let locked = false; const color = new Vector4(); let currentColorMask = null; const currentColorClear = new Vector4( 0, 0, 0, 0 ); return { setMask: function ( colorMask ) { if ( currentColorMask !== colorMask && ! locked ) { gl.colorMask( colorMask, colorMask, colorMask, colorMask ); currentColorMask = colorMask; } }, setLocked: function ( lock ) { locked = lock; }, setClear: function ( r, g, b, a, premultipliedAlpha ) { if ( premultipliedAlpha === true ) { r *= a; g *= a; b *= a; } color.set( r, g, b, a ); if ( currentColorClear.equals( color ) === false ) { gl.clearColor( r, g, b, a ); currentColorClear.copy( color ); } }, reset: function () { locked = false; currentColorMask = null; currentColorClear.set( - 1, 0, 0, 0 ); // set to invalid state } }; } function DepthBuffer() { let locked = false; let currentDepthMask = null; let currentDepthFunc = null; let currentDepthClear = null; return { setTest: function ( depthTest ) { if ( depthTest ) { enable( 2929 ); } else { disable( 2929 ); } }, setMask: function ( depthMask ) { if ( currentDepthMask !== depthMask && ! locked ) { gl.depthMask( depthMask ); currentDepthMask = depthMask; } }, setFunc: function ( depthFunc ) { if ( currentDepthFunc !== depthFunc ) { if ( depthFunc ) { switch ( depthFunc ) { case NeverDepth: gl.depthFunc( 512 ); break; case AlwaysDepth: gl.depthFunc( 519 ); break; case LessDepth: gl.depthFunc( 513 ); break; case LessEqualDepth: gl.depthFunc( 515 ); break; case EqualDepth: gl.depthFunc( 514 ); break; case GreaterEqualDepth: gl.depthFunc( 518 ); break; case GreaterDepth: gl.depthFunc( 516 ); break; case NotEqualDepth: gl.depthFunc( 517 ); break; default: gl.depthFunc( 515 ); } } else { gl.depthFunc( 515 ); } currentDepthFunc = depthFunc; } }, setLocked: function ( lock ) { locked = lock; }, setClear: function ( depth ) { if ( currentDepthClear !== depth ) { gl.clearDepth( depth ); currentDepthClear = depth; } }, reset: function () { locked = false; currentDepthMask = null; currentDepthFunc = null; currentDepthClear = null; } }; } function StencilBuffer() { let locked = false; let currentStencilMask = null; let currentStencilFunc = null; let currentStencilRef = null; let currentStencilFuncMask = null; let currentStencilFail = null; let currentStencilZFail = null; let currentStencilZPass = null; let currentStencilClear = null; return { setTest: function ( stencilTest ) { if ( ! locked ) { if ( stencilTest ) { enable( 2960 ); } else { disable( 2960 ); } } }, setMask: function ( stencilMask ) { if ( currentStencilMask !== stencilMask && ! locked ) { gl.stencilMask( stencilMask ); currentStencilMask = stencilMask; } }, setFunc: function ( stencilFunc, stencilRef, stencilMask ) { if ( currentStencilFunc !== stencilFunc || currentStencilRef !== stencilRef || currentStencilFuncMask !== stencilMask ) { gl.stencilFunc( stencilFunc, stencilRef, stencilMask ); currentStencilFunc = stencilFunc; currentStencilRef = stencilRef; currentStencilFuncMask = stencilMask; } }, setOp: function ( stencilFail, stencilZFail, stencilZPass ) { if ( currentStencilFail !== stencilFail || currentStencilZFail !== stencilZFail || currentStencilZPass !== stencilZPass ) { gl.stencilOp( stencilFail, stencilZFail, stencilZPass ); currentStencilFail = stencilFail; currentStencilZFail = stencilZFail; currentStencilZPass = stencilZPass; } }, setLocked: function ( lock ) { locked = lock; }, setClear: function ( stencil ) { if ( currentStencilClear !== stencil ) { gl.clearStencil( stencil ); currentStencilClear = stencil; } }, reset: function () { locked = false; currentStencilMask = null; currentStencilFunc = null; currentStencilRef = null; currentStencilFuncMask = null; currentStencilFail = null; currentStencilZFail = null; currentStencilZPass = null; currentStencilClear = null; } }; } // const colorBuffer = new ColorBuffer(); const depthBuffer = new DepthBuffer(); const stencilBuffer = new StencilBuffer(); let enabledCapabilities = {}; let xrFramebuffer = null; let currentBoundFramebuffers = {}; let currentProgram = null; let currentBlendingEnabled = false; let currentBlending = null; let currentBlendEquation = null; let currentBlendSrc = null; let currentBlendDst = null; let currentBlendEquationAlpha = null; let currentBlendSrcAlpha = null; let currentBlendDstAlpha = null; let currentPremultipledAlpha = false; let currentFlipSided = null; let currentCullFace = null; let currentLineWidth = null; let currentPolygonOffsetFactor = null; let currentPolygonOffsetUnits = null; const maxTextures = gl.getParameter( 35661 ); let lineWidthAvailable = false; let version = 0; const glVersion = gl.getParameter( 7938 ); if ( glVersion.indexOf( 'WebGL' ) !== - 1 ) { version = parseFloat( /^WebGL (\d)/.exec( glVersion )[ 1 ] ); lineWidthAvailable = ( version >= 1.0 ); } else if ( glVersion.indexOf( 'OpenGL ES' ) !== - 1 ) { version = parseFloat( /^OpenGL ES (\d)/.exec( glVersion )[ 1 ] ); lineWidthAvailable = ( version >= 2.0 ); } let currentTextureSlot = null; let currentBoundTextures = {}; const scissorParam = gl.getParameter( 3088 ); const viewportParam = gl.getParameter( 2978 ); const currentScissor = new Vector4().fromArray( scissorParam ); const currentViewport = new Vector4().fromArray( viewportParam ); function createTexture( type, target, count ) { const data = new Uint8Array( 4 ); // 4 is required to match default unpack alignment of 4. const texture = gl.createTexture(); gl.bindTexture( type, texture ); gl.texParameteri( type, 10241, 9728 ); gl.texParameteri( type, 10240, 9728 ); for ( let i = 0; i < count; i ++ ) { gl.texImage2D( target + i, 0, 6408, 1, 1, 0, 6408, 5121, data ); } return texture; } const emptyTextures = {}; emptyTextures[ 3553 ] = createTexture( 3553, 3553, 1 ); emptyTextures[ 34067 ] = createTexture( 34067, 34069, 6 ); // init colorBuffer.setClear( 0, 0, 0, 1 ); depthBuffer.setClear( 1 ); stencilBuffer.setClear( 0 ); enable( 2929 ); depthBuffer.setFunc( LessEqualDepth ); setFlipSided( false ); setCullFace( CullFaceBack ); enable( 2884 ); setBlending( NoBlending ); // function enable( id ) { if ( enabledCapabilities[ id ] !== true ) { gl.enable( id ); enabledCapabilities[ id ] = true; } } function disable( id ) { if ( enabledCapabilities[ id ] !== false ) { gl.disable( id ); enabledCapabilities[ id ] = false; } } function bindXRFramebuffer( framebuffer ) { if ( framebuffer !== xrFramebuffer ) { gl.bindFramebuffer( 36160, framebuffer ); xrFramebuffer = framebuffer; } } function bindFramebuffer( target, framebuffer ) { if ( framebuffer === null && xrFramebuffer !== null ) framebuffer = xrFramebuffer; // use active XR framebuffer if available if ( currentBoundFramebuffers[ target ] !== framebuffer ) { gl.bindFramebuffer( target, framebuffer ); currentBoundFramebuffers[ target ] = framebuffer; if ( isWebGL2 ) { // 36009 is equivalent to 36160 if ( target === 36009 ) { currentBoundFramebuffers[ 36160 ] = framebuffer; } if ( target === 36160 ) { currentBoundFramebuffers[ 36009 ] = framebuffer; } } return true; } return false; } function useProgram( program ) { if ( currentProgram !== program ) { gl.useProgram( program ); currentProgram = program; return true; } return false; } const equationToGL = { [ AddEquation ]: 32774, [ SubtractEquation ]: 32778, [ ReverseSubtractEquation ]: 32779 }; if ( isWebGL2 ) { equationToGL[ MinEquation ] = 32775; equationToGL[ MaxEquation ] = 32776; } else { const extension = extensions.get( 'EXT_blend_minmax' ); if ( extension !== null ) { equationToGL[ MinEquation ] = extension.MIN_EXT; equationToGL[ MaxEquation ] = extension.MAX_EXT; } } const factorToGL = { [ ZeroFactor ]: 0, [ OneFactor ]: 1, [ SrcColorFactor ]: 768, [ SrcAlphaFactor ]: 770, [ SrcAlphaSaturateFactor ]: 776, [ DstColorFactor ]: 774, [ DstAlphaFactor ]: 772, [ OneMinusSrcColorFactor ]: 769, [ OneMinusSrcAlphaFactor ]: 771, [ OneMinusDstColorFactor ]: 775, [ OneMinusDstAlphaFactor ]: 773 }; function setBlending( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha ) { if ( blending === NoBlending ) { if ( currentBlendingEnabled === true ) { disable( 3042 ); currentBlendingEnabled = false; } return; } if ( currentBlendingEnabled === false ) { enable( 3042 ); currentBlendingEnabled = true; } if ( blending !== CustomBlending ) { if ( blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha ) { if ( currentBlendEquation !== AddEquation || currentBlendEquationAlpha !== AddEquation ) { gl.blendEquation( 32774 ); currentBlendEquation = AddEquation; currentBlendEquationAlpha = AddEquation; } if ( premultipliedAlpha ) { switch ( blending ) { case NormalBlending: gl.blendFuncSeparate( 1, 771, 1, 771 ); break; case AdditiveBlending: gl.blendFunc( 1, 1 ); break; case SubtractiveBlending: gl.blendFuncSeparate( 0, 0, 769, 771 ); break; case MultiplyBlending: gl.blendFuncSeparate( 0, 768, 0, 770 ); break; default: console.error( 'THREE.WebGLState: Invalid blending: ', blending ); break; } } else { switch ( blending ) { case NormalBlending: gl.blendFuncSeparate( 770, 771, 1, 771 ); break; case AdditiveBlending: gl.blendFunc( 770, 1 ); break; case SubtractiveBlending: gl.blendFunc( 0, 769 ); break; case MultiplyBlending: gl.blendFunc( 0, 768 ); break; default: console.error( 'THREE.WebGLState: Invalid blending: ', blending ); break; } } currentBlendSrc = null; currentBlendDst = null; currentBlendSrcAlpha = null; currentBlendDstAlpha = null; currentBlending = blending; currentPremultipledAlpha = premultipliedAlpha; } return; } // custom blending blendEquationAlpha = blendEquationAlpha || blendEquation; blendSrcAlpha = blendSrcAlpha || blendSrc; blendDstAlpha = blendDstAlpha || blendDst; if ( blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha ) { gl.blendEquationSeparate( equationToGL[ blendEquation ], equationToGL[ blendEquationAlpha ] ); currentBlendEquation = blendEquation; currentBlendEquationAlpha = blendEquationAlpha; } if ( blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha ) { gl.blendFuncSeparate( factorToGL[ blendSrc ], factorToGL[ blendDst ], factorToGL[ blendSrcAlpha ], factorToGL[ blendDstAlpha ] ); currentBlendSrc = blendSrc; currentBlendDst = blendDst; currentBlendSrcAlpha = blendSrcAlpha; currentBlendDstAlpha = blendDstAlpha; } currentBlending = blending; currentPremultipledAlpha = null; } function setMaterial( material, frontFaceCW ) { material.side === DoubleSide ? disable( 2884 ) : enable( 2884 ); let flipSided = ( material.side === BackSide ); if ( frontFaceCW ) flipSided = ! flipSided; setFlipSided( flipSided ); ( material.blending === NormalBlending && material.transparent === false ) ? setBlending( NoBlending ) : setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha ); depthBuffer.setFunc( material.depthFunc ); depthBuffer.setTest( material.depthTest ); depthBuffer.setMask( material.depthWrite ); colorBuffer.setMask( material.colorWrite ); const stencilWrite = material.stencilWrite; stencilBuffer.setTest( stencilWrite ); if ( stencilWrite ) { stencilBuffer.setMask( material.stencilWriteMask ); stencilBuffer.setFunc( material.stencilFunc, material.stencilRef, material.stencilFuncMask ); stencilBuffer.setOp( material.stencilFail, material.stencilZFail, material.stencilZPass ); } setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits ); material.alphaToCoverage === true ? enable( 32926 ) : disable( 32926 ); } // function setFlipSided( flipSided ) { if ( currentFlipSided !== flipSided ) { if ( flipSided ) { gl.frontFace( 2304 ); } else { gl.frontFace( 2305 ); } currentFlipSided = flipSided; } } function setCullFace( cullFace ) { if ( cullFace !== CullFaceNone ) { enable( 2884 ); if ( cullFace !== currentCullFace ) { if ( cullFace === CullFaceBack ) { gl.cullFace( 1029 ); } else if ( cullFace === CullFaceFront ) { gl.cullFace( 1028 ); } else { gl.cullFace( 1032 ); } } } else { disable( 2884 ); } currentCullFace = cullFace; } function setLineWidth( width ) { if ( width !== currentLineWidth ) { if ( lineWidthAvailable ) gl.lineWidth( width ); currentLineWidth = width; } } function setPolygonOffset( polygonOffset, factor, units ) { if ( polygonOffset ) { enable( 32823 ); if ( currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units ) { gl.polygonOffset( factor, units ); currentPolygonOffsetFactor = factor; currentPolygonOffsetUnits = units; } } else { disable( 32823 ); } } function setScissorTest( scissorTest ) { if ( scissorTest ) { enable( 3089 ); } else { disable( 3089 ); } } // texture function activeTexture( webglSlot ) { if ( webglSlot === undefined ) webglSlot = 33984 + maxTextures - 1; if ( currentTextureSlot !== webglSlot ) { gl.activeTexture( webglSlot ); currentTextureSlot = webglSlot; } } function bindTexture( webglType, webglTexture ) { if ( currentTextureSlot === null ) { activeTexture(); } let boundTexture = currentBoundTextures[ currentTextureSlot ]; if ( boundTexture === undefined ) { boundTexture = { type: undefined, texture: undefined }; currentBoundTextures[ currentTextureSlot ] = boundTexture; } if ( boundTexture.type !== webglType || boundTexture.texture !== webglTexture ) { gl.bindTexture( webglType, webglTexture || emptyTextures[ webglType ] ); boundTexture.type = webglType; boundTexture.texture = webglTexture; } } function unbindTexture() { const boundTexture = currentBoundTextures[ currentTextureSlot ]; if ( boundTexture !== undefined && boundTexture.type !== undefined ) { gl.bindTexture( boundTexture.type, null ); boundTexture.type = undefined; boundTexture.texture = undefined; } } function compressedTexImage2D() { try { gl.compressedTexImage2D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function texImage2D() { try { gl.texImage2D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function texImage3D() { try { gl.texImage3D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } // function scissor( scissor ) { if ( currentScissor.equals( scissor ) === false ) { gl.scissor( scissor.x, scissor.y, scissor.z, scissor.w ); currentScissor.copy( scissor ); } } function viewport( viewport ) { if ( currentViewport.equals( viewport ) === false ) { gl.viewport( viewport.x, viewport.y, viewport.z, viewport.w ); currentViewport.copy( viewport ); } } // function reset() { // reset state gl.disable( 3042 ); gl.disable( 2884 ); gl.disable( 2929 ); gl.disable( 32823 ); gl.disable( 3089 ); gl.disable( 2960 ); gl.disable( 32926 ); gl.blendEquation( 32774 ); gl.blendFunc( 1, 0 ); gl.blendFuncSeparate( 1, 0, 1, 0 ); gl.colorMask( true, true, true, true ); gl.clearColor( 0, 0, 0, 0 ); gl.depthMask( true ); gl.depthFunc( 513 ); gl.clearDepth( 1 ); gl.stencilMask( 0xffffffff ); gl.stencilFunc( 519, 0, 0xffffffff ); gl.stencilOp( 7680, 7680, 7680 ); gl.clearStencil( 0 ); gl.cullFace( 1029 ); gl.frontFace( 2305 ); gl.polygonOffset( 0, 0 ); gl.activeTexture( 33984 ); gl.bindFramebuffer( 36160, null ); if ( isWebGL2 === true ) { gl.bindFramebuffer( 36009, null ); gl.bindFramebuffer( 36008, null ); } gl.useProgram( null ); gl.lineWidth( 1 ); gl.scissor( 0, 0, gl.canvas.width, gl.canvas.height ); gl.viewport( 0, 0, gl.canvas.width, gl.canvas.height ); // reset internals enabledCapabilities = {}; currentTextureSlot = null; currentBoundTextures = {}; xrFramebuffer = null; currentBoundFramebuffers = {}; currentProgram = null; currentBlendingEnabled = false; currentBlending = null; currentBlendEquation = null; currentBlendSrc = null; currentBlendDst = null; currentBlendEquationAlpha = null; currentBlendSrcAlpha = null; currentBlendDstAlpha = null; currentPremultipledAlpha = false; currentFlipSided = null; currentCullFace = null; currentLineWidth = null; currentPolygonOffsetFactor = null; currentPolygonOffsetUnits = null; currentScissor.set( 0, 0, gl.canvas.width, gl.canvas.height ); currentViewport.set( 0, 0, gl.canvas.width, gl.canvas.height ); colorBuffer.reset(); depthBuffer.reset(); stencilBuffer.reset(); } return { buffers: { color: colorBuffer, depth: depthBuffer, stencil: stencilBuffer }, enable: enable, disable: disable, bindFramebuffer: bindFramebuffer, bindXRFramebuffer: bindXRFramebuffer, useProgram: useProgram, setBlending: setBlending, setMaterial: setMaterial, setFlipSided: setFlipSided, setCullFace: setCullFace, setLineWidth: setLineWidth, setPolygonOffset: setPolygonOffset, setScissorTest: setScissorTest, activeTexture: activeTexture, bindTexture: bindTexture, unbindTexture: unbindTexture, compressedTexImage2D: compressedTexImage2D, texImage2D: texImage2D, texImage3D: texImage3D, scissor: scissor, viewport: viewport, reset: reset }; } function WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info ) { const isWebGL2 = capabilities.isWebGL2; const maxTextures = capabilities.maxTextures; const maxCubemapSize = capabilities.maxCubemapSize; const maxTextureSize = capabilities.maxTextureSize; const maxSamples = capabilities.maxSamples; const _videoTextures = new WeakMap(); let _canvas; // cordova iOS (as of 5.0) still uses UIWebView, which provides OffscreenCanvas, // also OffscreenCanvas.getContext("webgl"), but not OffscreenCanvas.getContext("2d")! // Some implementations may only implement OffscreenCanvas partially (e.g. lacking 2d). let useOffscreenCanvas = false; try { useOffscreenCanvas = typeof OffscreenCanvas !== 'undefined' && ( new OffscreenCanvas( 1, 1 ).getContext( '2d' ) ) !== null; } catch ( err ) { // Ignore any errors } function createCanvas( width, height ) { // Use OffscreenCanvas when available. Specially needed in web workers return useOffscreenCanvas ? new OffscreenCanvas( width, height ) : document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ); } function resizeImage( image, needsPowerOfTwo, needsNewCanvas, maxSize ) { let scale = 1; // handle case if texture exceeds max size if ( image.width > maxSize || image.height > maxSize ) { scale = maxSize / Math.max( image.width, image.height ); } // only perform resize if necessary if ( scale < 1 || needsPowerOfTwo === true ) { // only perform resize for certain image types if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) || ( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) || ( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ) { const floor = needsPowerOfTwo ? floorPowerOfTwo : Math.floor; const width = floor( scale * image.width ); const height = floor( scale * image.height ); if ( _canvas === undefined ) _canvas = createCanvas( width, height ); // cube textures can't reuse the same canvas const canvas = needsNewCanvas ? createCanvas( width, height ) : _canvas; canvas.width = width; canvas.height = height; const context = canvas.getContext( '2d' ); context.drawImage( image, 0, 0, width, height ); console.warn( 'THREE.WebGLRenderer: Texture has been resized from (' + image.width + 'x' + image.height + ') to (' + width + 'x' + height + ').' ); return canvas; } else { if ( 'data' in image ) { console.warn( 'THREE.WebGLRenderer: Image in DataTexture is too big (' + image.width + 'x' + image.height + ').' ); } return image; } } return image; } function isPowerOfTwo$1( image ) { return isPowerOfTwo( image.width ) && isPowerOfTwo( image.height ); } function textureNeedsPowerOfTwo( texture ) { if ( isWebGL2 ) return false; return ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) || ( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ); } function textureNeedsGenerateMipmaps( texture, supportsMips ) { return texture.generateMipmaps && supportsMips && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter; } function generateMipmap( target, texture, width, height, depth = 1 ) { _gl.generateMipmap( target ); const textureProperties = properties.get( texture ); textureProperties.__maxMipLevel = Math.log2( Math.max( width, height, depth ) ); } function getInternalFormat( internalFormatName, glFormat, glType ) { if ( isWebGL2 === false ) return glFormat; if ( internalFormatName !== null ) { if ( _gl[ internalFormatName ] !== undefined ) return _gl[ internalFormatName ]; console.warn( 'THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format \'' + internalFormatName + '\'' ); } let internalFormat = glFormat; if ( glFormat === 6403 ) { if ( glType === 5126 ) internalFormat = 33326; if ( glType === 5131 ) internalFormat = 33325; if ( glType === 5121 ) internalFormat = 33321; } if ( glFormat === 6407 ) { if ( glType === 5126 ) internalFormat = 34837; if ( glType === 5131 ) internalFormat = 34843; if ( glType === 5121 ) internalFormat = 32849; } if ( glFormat === 6408 ) { if ( glType === 5126 ) internalFormat = 34836; if ( glType === 5131 ) internalFormat = 34842; if ( glType === 5121 ) internalFormat = 32856; } if ( internalFormat === 33325 || internalFormat === 33326 || internalFormat === 34842 || internalFormat === 34836 ) { extensions.get( 'EXT_color_buffer_float' ); } return internalFormat; } // Fallback filters for non-power-of-2 textures function filterFallback( f ) { if ( f === NearestFilter || f === NearestMipmapNearestFilter || f === NearestMipmapLinearFilter ) { return 9728; } return 9729; } // function onTextureDispose( event ) { const texture = event.target; texture.removeEventListener( 'dispose', onTextureDispose ); deallocateTexture( texture ); if ( texture.isVideoTexture ) { _videoTextures.delete( texture ); } info.memory.textures --; } function onRenderTargetDispose( event ) { const renderTarget = event.target; renderTarget.removeEventListener( 'dispose', onRenderTargetDispose ); deallocateRenderTarget( renderTarget ); } // function deallocateTexture( texture ) { const textureProperties = properties.get( texture ); if ( textureProperties.__webglInit === undefined ) return; _gl.deleteTexture( textureProperties.__webglTexture ); properties.remove( texture ); } function deallocateRenderTarget( renderTarget ) { const texture = renderTarget.texture; const renderTargetProperties = properties.get( renderTarget ); const textureProperties = properties.get( texture ); if ( ! renderTarget ) return; if ( textureProperties.__webglTexture !== undefined ) { _gl.deleteTexture( textureProperties.__webglTexture ); info.memory.textures --; } if ( renderTarget.depthTexture ) { renderTarget.depthTexture.dispose(); } if ( renderTarget.isWebGLCubeRenderTarget ) { for ( let i = 0; i < 6; i ++ ) { _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ i ] ); if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer[ i ] ); } } else { _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer ); if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer ); if ( renderTargetProperties.__webglMultisampledFramebuffer ) _gl.deleteFramebuffer( renderTargetProperties.__webglMultisampledFramebuffer ); if ( renderTargetProperties.__webglColorRenderbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglColorRenderbuffer ); if ( renderTargetProperties.__webglDepthRenderbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthRenderbuffer ); } if ( renderTarget.isWebGLMultipleRenderTargets ) { for ( let i = 0, il = texture.length; i < il; i ++ ) { const attachmentProperties = properties.get( texture[ i ] ); if ( attachmentProperties.__webglTexture ) { _gl.deleteTexture( attachmentProperties.__webglTexture ); info.memory.textures --; } properties.remove( texture[ i ] ); } } properties.remove( texture ); properties.remove( renderTarget ); } // let textureUnits = 0; function resetTextureUnits() { textureUnits = 0; } function allocateTextureUnit() { const textureUnit = textureUnits; if ( textureUnit >= maxTextures ) { console.warn( 'THREE.WebGLTextures: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + maxTextures ); } textureUnits += 1; return textureUnit; } // function setTexture2D( texture, slot ) { const textureProperties = properties.get( texture ); if ( texture.isVideoTexture ) updateVideoTexture( texture ); if ( texture.version > 0 && textureProperties.__version !== texture.version ) { const image = texture.image; if ( image === undefined ) { console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is undefined' ); } else if ( image.complete === false ) { console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is incomplete' ); } else { uploadTexture( textureProperties, texture, slot ); return; } } state.activeTexture( 33984 + slot ); state.bindTexture( 3553, textureProperties.__webglTexture ); } function setTexture2DArray( texture, slot ) { const textureProperties = properties.get( texture ); if ( texture.version > 0 && textureProperties.__version !== texture.version ) { uploadTexture( textureProperties, texture, slot ); return; } state.activeTexture( 33984 + slot ); state.bindTexture( 35866, textureProperties.__webglTexture ); } function setTexture3D( texture, slot ) { const textureProperties = properties.get( texture ); if ( texture.version > 0 && textureProperties.__version !== texture.version ) { uploadTexture( textureProperties, texture, slot ); return; } state.activeTexture( 33984 + slot ); state.bindTexture( 32879, textureProperties.__webglTexture ); } function setTextureCube( texture, slot ) { const textureProperties = properties.get( texture ); if ( texture.version > 0 && textureProperties.__version !== texture.version ) { uploadCubeTexture( textureProperties, texture, slot ); return; } state.activeTexture( 33984 + slot ); state.bindTexture( 34067, textureProperties.__webglTexture ); } const wrappingToGL = { [ RepeatWrapping ]: 10497, [ ClampToEdgeWrapping ]: 33071, [ MirroredRepeatWrapping ]: 33648 }; const filterToGL = { [ NearestFilter ]: 9728, [ NearestMipmapNearestFilter ]: 9984, [ NearestMipmapLinearFilter ]: 9986, [ LinearFilter ]: 9729, [ LinearMipmapNearestFilter ]: 9985, [ LinearMipmapLinearFilter ]: 9987 }; function setTextureParameters( textureType, texture, supportsMips ) { if ( supportsMips ) { _gl.texParameteri( textureType, 10242, wrappingToGL[ texture.wrapS ] ); _gl.texParameteri( textureType, 10243, wrappingToGL[ texture.wrapT ] ); if ( textureType === 32879 || textureType === 35866 ) { _gl.texParameteri( textureType, 32882, wrappingToGL[ texture.wrapR ] ); } _gl.texParameteri( textureType, 10240, filterToGL[ texture.magFilter ] ); _gl.texParameteri( textureType, 10241, filterToGL[ texture.minFilter ] ); } else { _gl.texParameteri( textureType, 10242, 33071 ); _gl.texParameteri( textureType, 10243, 33071 ); if ( textureType === 32879 || textureType === 35866 ) { _gl.texParameteri( textureType, 32882, 33071 ); } if ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) { console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.' ); } _gl.texParameteri( textureType, 10240, filterFallback( texture.magFilter ) ); _gl.texParameteri( textureType, 10241, filterFallback( texture.minFilter ) ); if ( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ) { console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.' ); } } if ( extensions.has( 'EXT_texture_filter_anisotropic' ) === true ) { const extension = extensions.get( 'EXT_texture_filter_anisotropic' ); if ( texture.type === FloatType && extensions.has( 'OES_texture_float_linear' ) === false ) return; // verify extension for WebGL 1 and WebGL 2 if ( isWebGL2 === false && ( texture.type === HalfFloatType && extensions.has( 'OES_texture_half_float_linear' ) === false ) ) return; // verify extension for WebGL 1 only if ( texture.anisotropy > 1 || properties.get( texture ).__currentAnisotropy ) { _gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, capabilities.getMaxAnisotropy() ) ); properties.get( texture ).__currentAnisotropy = texture.anisotropy; } } } function initTexture( textureProperties, texture ) { if ( textureProperties.__webglInit === undefined ) { textureProperties.__webglInit = true; texture.addEventListener( 'dispose', onTextureDispose ); textureProperties.__webglTexture = _gl.createTexture(); info.memory.textures ++; } } function uploadTexture( textureProperties, texture, slot ) { let textureType = 3553; if ( texture.isDataTexture2DArray ) textureType = 35866; if ( texture.isDataTexture3D ) textureType = 32879; initTexture( textureProperties, texture ); state.activeTexture( 33984 + slot ); state.bindTexture( textureType, textureProperties.__webglTexture ); _gl.pixelStorei( 37440, texture.flipY ); _gl.pixelStorei( 37441, texture.premultiplyAlpha ); _gl.pixelStorei( 3317, texture.unpackAlignment ); _gl.pixelStorei( 37443, 0 ); const needsPowerOfTwo = textureNeedsPowerOfTwo( texture ) && isPowerOfTwo$1( texture.image ) === false; const image = resizeImage( texture.image, needsPowerOfTwo, false, maxTextureSize ); const supportsMips = isPowerOfTwo$1( image ) || isWebGL2, glFormat = utils.convert( texture.format ); let glType = utils.convert( texture.type ), glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType ); setTextureParameters( textureType, texture, supportsMips ); let mipmap; const mipmaps = texture.mipmaps; if ( texture.isDepthTexture ) { // populate depth texture with dummy data glInternalFormat = 6402; if ( isWebGL2 ) { if ( texture.type === FloatType ) { glInternalFormat = 36012; } else if ( texture.type === UnsignedIntType ) { glInternalFormat = 33190; } else if ( texture.type === UnsignedInt248Type ) { glInternalFormat = 35056; } else { glInternalFormat = 33189; // WebGL2 requires sized internalformat for glTexImage2D } } else { if ( texture.type === FloatType ) { console.error( 'WebGLRenderer: Floating point depth texture requires WebGL2.' ); } } // validation checks for WebGL 1 if ( texture.format === DepthFormat && glInternalFormat === 6402 ) { // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are // DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) if ( texture.type !== UnsignedShortType && texture.type !== UnsignedIntType ) { console.warn( 'THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.' ); texture.type = UnsignedShortType; glType = utils.convert( texture.type ); } } if ( texture.format === DepthStencilFormat && glInternalFormat === 6402 ) { // Depth stencil textures need the DEPTH_STENCIL internal format // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) glInternalFormat = 34041; // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are // DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL. // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) if ( texture.type !== UnsignedInt248Type ) { console.warn( 'THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.' ); texture.type = UnsignedInt248Type; glType = utils.convert( texture.type ); } } // state.texImage2D( 3553, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null ); } else if ( texture.isDataTexture ) { // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if ( mipmaps.length > 0 && supportsMips ) { for ( let i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; state.texImage2D( 3553, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } texture.generateMipmaps = false; textureProperties.__maxMipLevel = mipmaps.length - 1; } else { state.texImage2D( 3553, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, image.data ); textureProperties.__maxMipLevel = 0; } } else if ( texture.isCompressedTexture ) { for ( let i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) { if ( glFormat !== null ) { state.compressedTexImage2D( 3553, i, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data ); } else { console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()' ); } } else { state.texImage2D( 3553, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } } textureProperties.__maxMipLevel = mipmaps.length - 1; } else if ( texture.isDataTexture2DArray ) { state.texImage3D( 35866, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data ); textureProperties.__maxMipLevel = 0; } else if ( texture.isDataTexture3D ) { state.texImage3D( 32879, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data ); textureProperties.__maxMipLevel = 0; } else { // regular Texture (image, video, canvas) // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if ( mipmaps.length > 0 && supportsMips ) { for ( let i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; state.texImage2D( 3553, i, glInternalFormat, glFormat, glType, mipmap ); } texture.generateMipmaps = false; textureProperties.__maxMipLevel = mipmaps.length - 1; } else { state.texImage2D( 3553, 0, glInternalFormat, glFormat, glType, image ); textureProperties.__maxMipLevel = 0; } } if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) { generateMipmap( textureType, texture, image.width, image.height ); } textureProperties.__version = texture.version; if ( texture.onUpdate ) texture.onUpdate( texture ); } function uploadCubeTexture( textureProperties, texture, slot ) { if ( texture.image.length !== 6 ) return; initTexture( textureProperties, texture ); state.activeTexture( 33984 + slot ); state.bindTexture( 34067, textureProperties.__webglTexture ); _gl.pixelStorei( 37440, texture.flipY ); _gl.pixelStorei( 37441, texture.premultiplyAlpha ); _gl.pixelStorei( 3317, texture.unpackAlignment ); _gl.pixelStorei( 37443, 0 ); const isCompressed = ( texture && ( texture.isCompressedTexture || texture.image[ 0 ].isCompressedTexture ) ); const isDataTexture = ( texture.image[ 0 ] && texture.image[ 0 ].isDataTexture ); const cubeImage = []; for ( let i = 0; i < 6; i ++ ) { if ( ! isCompressed && ! isDataTexture ) { cubeImage[ i ] = resizeImage( texture.image[ i ], false, true, maxCubemapSize ); } else { cubeImage[ i ] = isDataTexture ? texture.image[ i ].image : texture.image[ i ]; } } const image = cubeImage[ 0 ], supportsMips = isPowerOfTwo$1( image ) || isWebGL2, glFormat = utils.convert( texture.format ), glType = utils.convert( texture.type ), glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType ); setTextureParameters( 34067, texture, supportsMips ); let mipmaps; if ( isCompressed ) { for ( let i = 0; i < 6; i ++ ) { mipmaps = cubeImage[ i ].mipmaps; for ( let j = 0; j < mipmaps.length; j ++ ) { const mipmap = mipmaps[ j ]; if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) { if ( glFormat !== null ) { state.compressedTexImage2D( 34069 + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data ); } else { console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()' ); } } else { state.texImage2D( 34069 + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } } } textureProperties.__maxMipLevel = mipmaps.length - 1; } else { mipmaps = texture.mipmaps; for ( let i = 0; i < 6; i ++ ) { if ( isDataTexture ) { state.texImage2D( 34069 + i, 0, glInternalFormat, cubeImage[ i ].width, cubeImage[ i ].height, 0, glFormat, glType, cubeImage[ i ].data ); for ( let j = 0; j < mipmaps.length; j ++ ) { const mipmap = mipmaps[ j ]; const mipmapImage = mipmap.image[ i ].image; state.texImage2D( 34069 + i, j + 1, glInternalFormat, mipmapImage.width, mipmapImage.height, 0, glFormat, glType, mipmapImage.data ); } } else { state.texImage2D( 34069 + i, 0, glInternalFormat, glFormat, glType, cubeImage[ i ] ); for ( let j = 0; j < mipmaps.length; j ++ ) { const mipmap = mipmaps[ j ]; state.texImage2D( 34069 + i, j + 1, glInternalFormat, glFormat, glType, mipmap.image[ i ] ); } } } textureProperties.__maxMipLevel = mipmaps.length; } if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) { // We assume images for cube map have the same size. generateMipmap( 34067, texture, image.width, image.height ); } textureProperties.__version = texture.version; if ( texture.onUpdate ) texture.onUpdate( texture ); } // Render targets // Setup storage for target texture and bind it to correct framebuffer function setupFrameBufferTexture( framebuffer, renderTarget, texture, attachment, textureTarget ) { const glFormat = utils.convert( texture.format ); const glType = utils.convert( texture.type ); const glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType ); if ( textureTarget === 32879 || textureTarget === 35866 ) { state.texImage3D( textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, renderTarget.depth, 0, glFormat, glType, null ); } else { state.texImage2D( textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null ); } state.bindFramebuffer( 36160, framebuffer ); _gl.framebufferTexture2D( 36160, attachment, textureTarget, properties.get( texture ).__webglTexture, 0 ); state.bindFramebuffer( 36160, null ); } // Setup storage for internal depth/stencil buffers and bind to correct framebuffer function setupRenderBufferStorage( renderbuffer, renderTarget, isMultisample ) { _gl.bindRenderbuffer( 36161, renderbuffer ); if ( renderTarget.depthBuffer && ! renderTarget.stencilBuffer ) { let glInternalFormat = 33189; if ( isMultisample ) { const depthTexture = renderTarget.depthTexture; if ( depthTexture && depthTexture.isDepthTexture ) { if ( depthTexture.type === FloatType ) { glInternalFormat = 36012; } else if ( depthTexture.type === UnsignedIntType ) { glInternalFormat = 33190; } } const samples = getRenderTargetSamples( renderTarget ); _gl.renderbufferStorageMultisample( 36161, samples, glInternalFormat, renderTarget.width, renderTarget.height ); } else { _gl.renderbufferStorage( 36161, glInternalFormat, renderTarget.width, renderTarget.height ); } _gl.framebufferRenderbuffer( 36160, 36096, 36161, renderbuffer ); } else if ( renderTarget.depthBuffer && renderTarget.stencilBuffer ) { if ( isMultisample ) { const samples = getRenderTargetSamples( renderTarget ); _gl.renderbufferStorageMultisample( 36161, samples, 35056, renderTarget.width, renderTarget.height ); } else { _gl.renderbufferStorage( 36161, 34041, renderTarget.width, renderTarget.height ); } _gl.framebufferRenderbuffer( 36160, 33306, 36161, renderbuffer ); } else { // Use the first texture for MRT so far const texture = renderTarget.isWebGLMultipleRenderTargets === true ? renderTarget.texture[ 0 ] : renderTarget.texture; const glFormat = utils.convert( texture.format ); const glType = utils.convert( texture.type ); const glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType ); if ( isMultisample ) { const samples = getRenderTargetSamples( renderTarget ); _gl.renderbufferStorageMultisample( 36161, samples, glInternalFormat, renderTarget.width, renderTarget.height ); } else { _gl.renderbufferStorage( 36161, glInternalFormat, renderTarget.width, renderTarget.height ); } } _gl.bindRenderbuffer( 36161, null ); } // Setup resources for a Depth Texture for a FBO (needs an extension) function setupDepthTexture( framebuffer, renderTarget ) { const isCube = ( renderTarget && renderTarget.isWebGLCubeRenderTarget ); if ( isCube ) throw new Error( 'Depth Texture with cube render targets is not supported' ); state.bindFramebuffer( 36160, framebuffer ); if ( ! ( renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture ) ) { throw new Error( 'renderTarget.depthTexture must be an instance of THREE.DepthTexture' ); } // upload an empty depth texture with framebuffer size if ( ! properties.get( renderTarget.depthTexture ).__webglTexture || renderTarget.depthTexture.image.width !== renderTarget.width || renderTarget.depthTexture.image.height !== renderTarget.height ) { renderTarget.depthTexture.image.width = renderTarget.width; renderTarget.depthTexture.image.height = renderTarget.height; renderTarget.depthTexture.needsUpdate = true; } setTexture2D( renderTarget.depthTexture, 0 ); const webglDepthTexture = properties.get( renderTarget.depthTexture ).__webglTexture; if ( renderTarget.depthTexture.format === DepthFormat ) { _gl.framebufferTexture2D( 36160, 36096, 3553, webglDepthTexture, 0 ); } else if ( renderTarget.depthTexture.format === DepthStencilFormat ) { _gl.framebufferTexture2D( 36160, 33306, 3553, webglDepthTexture, 0 ); } else { throw new Error( 'Unknown depthTexture format' ); } } // Setup GL resources for a non-texture depth buffer function setupDepthRenderbuffer( renderTarget ) { const renderTargetProperties = properties.get( renderTarget ); const isCube = ( renderTarget.isWebGLCubeRenderTarget === true ); if ( renderTarget.depthTexture ) { if ( isCube ) throw new Error( 'target.depthTexture not supported in Cube render targets' ); setupDepthTexture( renderTargetProperties.__webglFramebuffer, renderTarget ); } else { if ( isCube ) { renderTargetProperties.__webglDepthbuffer = []; for ( let i = 0; i < 6; i ++ ) { state.bindFramebuffer( 36160, renderTargetProperties.__webglFramebuffer[ i ] ); renderTargetProperties.__webglDepthbuffer[ i ] = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer[ i ], renderTarget, false ); } } else { state.bindFramebuffer( 36160, renderTargetProperties.__webglFramebuffer ); renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer, renderTarget, false ); } } state.bindFramebuffer( 36160, null ); } // Set up GL resources for the render target function setupRenderTarget( renderTarget ) { const texture = renderTarget.texture; const renderTargetProperties = properties.get( renderTarget ); const textureProperties = properties.get( texture ); renderTarget.addEventListener( 'dispose', onRenderTargetDispose ); if ( renderTarget.isWebGLMultipleRenderTargets !== true ) { textureProperties.__webglTexture = _gl.createTexture(); textureProperties.__version = texture.version; info.memory.textures ++; } const isCube = ( renderTarget.isWebGLCubeRenderTarget === true ); const isMultipleRenderTargets = ( renderTarget.isWebGLMultipleRenderTargets === true ); const isMultisample = ( renderTarget.isWebGLMultisampleRenderTarget === true ); const isRenderTarget3D = texture.isDataTexture3D || texture.isDataTexture2DArray; const supportsMips = isPowerOfTwo$1( renderTarget ) || isWebGL2; // Handles WebGL2 RGBFormat fallback - #18858 if ( isWebGL2 && texture.format === RGBFormat && ( texture.type === FloatType || texture.type === HalfFloatType ) ) { texture.format = RGBAFormat; console.warn( 'THREE.WebGLRenderer: Rendering to textures with RGB format is not supported. Using RGBA format instead.' ); } // Setup framebuffer if ( isCube ) { renderTargetProperties.__webglFramebuffer = []; for ( let i = 0; i < 6; i ++ ) { renderTargetProperties.__webglFramebuffer[ i ] = _gl.createFramebuffer(); } } else { renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer(); if ( isMultipleRenderTargets ) { if ( capabilities.drawBuffers ) { const textures = renderTarget.texture; for ( let i = 0, il = textures.length; i < il; i ++ ) { const attachmentProperties = properties.get( textures[ i ] ); if ( attachmentProperties.__webglTexture === undefined ) { attachmentProperties.__webglTexture = _gl.createTexture(); info.memory.textures ++; } } } else { console.warn( 'THREE.WebGLRenderer: WebGLMultipleRenderTargets can only be used with WebGL2 or WEBGL_draw_buffers extension.' ); } } else if ( isMultisample ) { if ( isWebGL2 ) { renderTargetProperties.__webglMultisampledFramebuffer = _gl.createFramebuffer(); renderTargetProperties.__webglColorRenderbuffer = _gl.createRenderbuffer(); _gl.bindRenderbuffer( 36161, renderTargetProperties.__webglColorRenderbuffer ); const glFormat = utils.convert( texture.format ); const glType = utils.convert( texture.type ); const glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType ); const samples = getRenderTargetSamples( renderTarget ); _gl.renderbufferStorageMultisample( 36161, samples, glInternalFormat, renderTarget.width, renderTarget.height ); state.bindFramebuffer( 36160, renderTargetProperties.__webglMultisampledFramebuffer ); _gl.framebufferRenderbuffer( 36160, 36064, 36161, renderTargetProperties.__webglColorRenderbuffer ); _gl.bindRenderbuffer( 36161, null ); if ( renderTarget.depthBuffer ) { renderTargetProperties.__webglDepthRenderbuffer = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthRenderbuffer, renderTarget, true ); } state.bindFramebuffer( 36160, null ); } else { console.warn( 'THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.' ); } } } // Setup color buffer if ( isCube ) { state.bindTexture( 34067, textureProperties.__webglTexture ); setTextureParameters( 34067, texture, supportsMips ); for ( let i = 0; i < 6; i ++ ) { setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ i ], renderTarget, texture, 36064, 34069 + i ); } if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) { generateMipmap( 34067, texture, renderTarget.width, renderTarget.height ); } state.unbindTexture(); } else if ( isMultipleRenderTargets ) { const textures = renderTarget.texture; for ( let i = 0, il = textures.length; i < il; i ++ ) { const attachment = textures[ i ]; const attachmentProperties = properties.get( attachment ); state.bindTexture( 3553, attachmentProperties.__webglTexture ); setTextureParameters( 3553, attachment, supportsMips ); setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, attachment, 36064 + i, 3553 ); if ( textureNeedsGenerateMipmaps( attachment, supportsMips ) ) { generateMipmap( 3553, attachment, renderTarget.width, renderTarget.height ); } } state.unbindTexture(); } else { let glTextureType = 3553; if ( isRenderTarget3D ) { // Render targets containing layers, i.e: Texture 3D and 2d arrays if ( isWebGL2 ) { const isTexture3D = texture.isDataTexture3D; glTextureType = isTexture3D ? 32879 : 35866; } else { console.warn( 'THREE.DataTexture3D and THREE.DataTexture2DArray only supported with WebGL2.' ); } } state.bindTexture( glTextureType, textureProperties.__webglTexture ); setTextureParameters( glTextureType, texture, supportsMips ); setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, texture, 36064, glTextureType ); if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) { generateMipmap( glTextureType, texture, renderTarget.width, renderTarget.height, renderTarget.depth ); } state.unbindTexture(); } // Setup depth and stencil buffers if ( renderTarget.depthBuffer ) { setupDepthRenderbuffer( renderTarget ); } } function updateRenderTargetMipmap( renderTarget ) { const supportsMips = isPowerOfTwo$1( renderTarget ) || isWebGL2; const textures = renderTarget.isWebGLMultipleRenderTargets === true ? renderTarget.texture : [ renderTarget.texture ]; for ( let i = 0, il = textures.length; i < il; i ++ ) { const texture = textures[ i ]; if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) { const target = renderTarget.isWebGLCubeRenderTarget ? 34067 : 3553; const webglTexture = properties.get( texture ).__webglTexture; state.bindTexture( target, webglTexture ); generateMipmap( target, texture, renderTarget.width, renderTarget.height ); state.unbindTexture(); } } } function updateMultisampleRenderTarget( renderTarget ) { if ( renderTarget.isWebGLMultisampleRenderTarget ) { if ( isWebGL2 ) { const width = renderTarget.width; const height = renderTarget.height; let mask = 16384; if ( renderTarget.depthBuffer ) mask |= 256; if ( renderTarget.stencilBuffer ) mask |= 1024; const renderTargetProperties = properties.get( renderTarget ); state.bindFramebuffer( 36008, renderTargetProperties.__webglMultisampledFramebuffer ); state.bindFramebuffer( 36009, renderTargetProperties.__webglFramebuffer ); _gl.blitFramebuffer( 0, 0, width, height, 0, 0, width, height, mask, 9728 ); state.bindFramebuffer( 36008, null ); state.bindFramebuffer( 36009, renderTargetProperties.__webglMultisampledFramebuffer ); } else { console.warn( 'THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.' ); } } } function getRenderTargetSamples( renderTarget ) { return ( isWebGL2 && renderTarget.isWebGLMultisampleRenderTarget ) ? Math.min( maxSamples, renderTarget.samples ) : 0; } function updateVideoTexture( texture ) { const frame = info.render.frame; // Check the last frame we updated the VideoTexture if ( _videoTextures.get( texture ) !== frame ) { _videoTextures.set( texture, frame ); texture.update(); } } // backwards compatibility let warnedTexture2D = false; let warnedTextureCube = false; function safeSetTexture2D( texture, slot ) { if ( texture && texture.isWebGLRenderTarget ) { if ( warnedTexture2D === false ) { console.warn( 'THREE.WebGLTextures.safeSetTexture2D: don\'t use render targets as textures. Use their .texture property instead.' ); warnedTexture2D = true; } texture = texture.texture; } setTexture2D( texture, slot ); } function safeSetTextureCube( texture, slot ) { if ( texture && texture.isWebGLCubeRenderTarget ) { if ( warnedTextureCube === false ) { console.warn( 'THREE.WebGLTextures.safeSetTextureCube: don\'t use cube render targets as textures. Use their .texture property instead.' ); warnedTextureCube = true; } texture = texture.texture; } setTextureCube( texture, slot ); } // this.allocateTextureUnit = allocateTextureUnit; this.resetTextureUnits = resetTextureUnits; this.setTexture2D = setTexture2D; this.setTexture2DArray = setTexture2DArray; this.setTexture3D = setTexture3D; this.setTextureCube = setTextureCube; this.setupRenderTarget = setupRenderTarget; this.updateRenderTargetMipmap = updateRenderTargetMipmap; this.updateMultisampleRenderTarget = updateMultisampleRenderTarget; this.safeSetTexture2D = safeSetTexture2D; this.safeSetTextureCube = safeSetTextureCube; } function WebGLUtils( gl, extensions, capabilities ) { const isWebGL2 = capabilities.isWebGL2; function convert( p ) { let extension; if ( p === UnsignedByteType ) return 5121; if ( p === UnsignedShort4444Type ) return 32819; if ( p === UnsignedShort5551Type ) return 32820; if ( p === UnsignedShort565Type ) return 33635; if ( p === ByteType ) return 5120; if ( p === ShortType ) return 5122; if ( p === UnsignedShortType ) return 5123; if ( p === IntType ) return 5124; if ( p === UnsignedIntType ) return 5125; if ( p === FloatType ) return 5126; if ( p === HalfFloatType ) { if ( isWebGL2 ) return 5131; extension = extensions.get( 'OES_texture_half_float' ); if ( extension !== null ) { return extension.HALF_FLOAT_OES; } else { return null; } } if ( p === AlphaFormat ) return 6406; if ( p === RGBFormat ) return 6407; if ( p === RGBAFormat ) return 6408; if ( p === LuminanceFormat ) return 6409; if ( p === LuminanceAlphaFormat ) return 6410; if ( p === DepthFormat ) return 6402; if ( p === DepthStencilFormat ) return 34041; if ( p === RedFormat ) return 6403; // WebGL2 formats. if ( p === RedIntegerFormat ) return 36244; if ( p === RGFormat ) return 33319; if ( p === RGIntegerFormat ) return 33320; if ( p === RGBIntegerFormat ) return 36248; if ( p === RGBAIntegerFormat ) return 36249; if ( p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_s3tc' ); if ( extension !== null ) { if ( p === RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT; if ( p === RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT; if ( p === RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT; if ( p === RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT; } else { return null; } } if ( p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_pvrtc' ); if ( extension !== null ) { if ( p === RGB_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG; if ( p === RGB_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG; if ( p === RGBA_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; if ( p === RGBA_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG; } else { return null; } } if ( p === RGB_ETC1_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_etc1' ); if ( extension !== null ) { return extension.COMPRESSED_RGB_ETC1_WEBGL; } else { return null; } } if ( p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_etc' ); if ( extension !== null ) { if ( p === RGB_ETC2_Format ) return extension.COMPRESSED_RGB8_ETC2; if ( p === RGBA_ETC2_EAC_Format ) return extension.COMPRESSED_RGBA8_ETC2_EAC; } } if ( p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format || p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format || p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format || p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format || p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format || p === SRGB8_ALPHA8_ASTC_4x4_Format || p === SRGB8_ALPHA8_ASTC_5x4_Format || p === SRGB8_ALPHA8_ASTC_5x5_Format || p === SRGB8_ALPHA8_ASTC_6x5_Format || p === SRGB8_ALPHA8_ASTC_6x6_Format || p === SRGB8_ALPHA8_ASTC_8x5_Format || p === SRGB8_ALPHA8_ASTC_8x6_Format || p === SRGB8_ALPHA8_ASTC_8x8_Format || p === SRGB8_ALPHA8_ASTC_10x5_Format || p === SRGB8_ALPHA8_ASTC_10x6_Format || p === SRGB8_ALPHA8_ASTC_10x8_Format || p === SRGB8_ALPHA8_ASTC_10x10_Format || p === SRGB8_ALPHA8_ASTC_12x10_Format || p === SRGB8_ALPHA8_ASTC_12x12_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_astc' ); if ( extension !== null ) { // TODO Complete? return p; } else { return null; } } if ( p === RGBA_BPTC_Format ) { extension = extensions.get( 'EXT_texture_compression_bptc' ); if ( extension !== null ) { // TODO Complete? return p; } else { return null; } } if ( p === UnsignedInt248Type ) { if ( isWebGL2 ) return 34042; extension = extensions.get( 'WEBGL_depth_texture' ); if ( extension !== null ) { return extension.UNSIGNED_INT_24_8_WEBGL; } else { return null; } } } return { convert: convert }; } class ArrayCamera extends PerspectiveCamera { constructor( array = [] ) { super(); this.cameras = array; } } ArrayCamera.prototype.isArrayCamera = true; class Group extends Object3D { constructor() { super(); this.type = 'Group'; } } Group.prototype.isGroup = true; const _moveEvent = { type: 'move' }; class WebXRController { constructor() { this._targetRay = null; this._grip = null; this._hand = null; } getHandSpace() { if ( this._hand === null ) { this._hand = new Group(); this._hand.matrixAutoUpdate = false; this._hand.visible = false; this._hand.joints = {}; this._hand.inputState = { pinching: false }; } return this._hand; } getTargetRaySpace() { if ( this._targetRay === null ) { this._targetRay = new Group(); this._targetRay.matrixAutoUpdate = false; this._targetRay.visible = false; this._targetRay.hasLinearVelocity = false; this._targetRay.linearVelocity = new Vector3(); this._targetRay.hasAngularVelocity = false; this._targetRay.angularVelocity = new Vector3(); } return this._targetRay; } getGripSpace() { if ( this._grip === null ) { this._grip = new Group(); this._grip.matrixAutoUpdate = false; this._grip.visible = false; this._grip.hasLinearVelocity = false; this._grip.linearVelocity = new Vector3(); this._grip.hasAngularVelocity = false; this._grip.angularVelocity = new Vector3(); } return this._grip; } dispatchEvent( event ) { if ( this._targetRay !== null ) { this._targetRay.dispatchEvent( event ); } if ( this._grip !== null ) { this._grip.dispatchEvent( event ); } if ( this._hand !== null ) { this._hand.dispatchEvent( event ); } return this; } disconnect( inputSource ) { this.dispatchEvent( { type: 'disconnected', data: inputSource } ); if ( this._targetRay !== null ) { this._targetRay.visible = false; } if ( this._grip !== null ) { this._grip.visible = false; } if ( this._hand !== null ) { this._hand.visible = false; } return this; } update( inputSource, frame, referenceSpace ) { let inputPose = null; let gripPose = null; let handPose = null; const targetRay = this._targetRay; const grip = this._grip; const hand = this._hand; if ( inputSource && frame.session.visibilityState !== 'visible-blurred' ) { if ( targetRay !== null ) { inputPose = frame.getPose( inputSource.targetRaySpace, referenceSpace ); if ( inputPose !== null ) { targetRay.matrix.fromArray( inputPose.transform.matrix ); targetRay.matrix.decompose( targetRay.position, targetRay.rotation, targetRay.scale ); if ( inputPose.linearVelocity ) { targetRay.hasLinearVelocity = true; targetRay.linearVelocity.copy( inputPose.linearVelocity ); } else { targetRay.hasLinearVelocity = false; } if ( inputPose.angularVelocity ) { targetRay.hasAngularVelocity = true; targetRay.angularVelocity.copy( inputPose.angularVelocity ); } else { targetRay.hasAngularVelocity = false; } this.dispatchEvent( _moveEvent ); } } if ( hand && inputSource.hand ) { handPose = true; for ( const inputjoint of inputSource.hand.values() ) { // Update the joints groups with the XRJoint poses const jointPose = frame.getJointPose( inputjoint, referenceSpace ); if ( hand.joints[ inputjoint.jointName ] === undefined ) { // The transform of this joint will be updated with the joint pose on each frame const joint = new Group(); joint.matrixAutoUpdate = false; joint.visible = false; hand.joints[ inputjoint.jointName ] = joint; // ?? hand.add( joint ); } const joint = hand.joints[ inputjoint.jointName ]; if ( jointPose !== null ) { joint.matrix.fromArray( jointPose.transform.matrix ); joint.matrix.decompose( joint.position, joint.rotation, joint.scale ); joint.jointRadius = jointPose.radius; } joint.visible = jointPose !== null; } // Custom events // Check pinchz const indexTip = hand.joints[ 'index-finger-tip' ]; const thumbTip = hand.joints[ 'thumb-tip' ]; const distance = indexTip.position.distanceTo( thumbTip.position ); const distanceToPinch = 0.02; const threshold = 0.005; if ( hand.inputState.pinching && distance > distanceToPinch + threshold ) { hand.inputState.pinching = false; this.dispatchEvent( { type: 'pinchend', handedness: inputSource.handedness, target: this } ); } else if ( ! hand.inputState.pinching && distance <= distanceToPinch - threshold ) { hand.inputState.pinching = true; this.dispatchEvent( { type: 'pinchstart', handedness: inputSource.handedness, target: this } ); } } else { if ( grip !== null && inputSource.gripSpace ) { gripPose = frame.getPose( inputSource.gripSpace, referenceSpace ); if ( gripPose !== null ) { grip.matrix.fromArray( gripPose.transform.matrix ); grip.matrix.decompose( grip.position, grip.rotation, grip.scale ); if ( gripPose.linearVelocity ) { grip.hasLinearVelocity = true; grip.linearVelocity.copy( gripPose.linearVelocity ); } else { grip.hasLinearVelocity = false; } if ( gripPose.angularVelocity ) { grip.hasAngularVelocity = true; grip.angularVelocity.copy( gripPose.angularVelocity ); } else { grip.hasAngularVelocity = false; } } } } } if ( targetRay !== null ) { targetRay.visible = ( inputPose !== null ); } if ( grip !== null ) { grip.visible = ( gripPose !== null ); } if ( hand !== null ) { hand.visible = ( handPose !== null ); } return this; } } class WebXRManager extends EventDispatcher { constructor( renderer, gl ) { super(); const scope = this; const state = renderer.state; let session = null; let framebufferScaleFactor = 1.0; let referenceSpace = null; let referenceSpaceType = 'local-floor'; let pose = null; let glBinding = null; let glFramebuffer = null; let glProjLayer = null; let glBaseLayer = null; let isMultisample = false; let glMultisampledFramebuffer = null; let glColorRenderbuffer = null; let glDepthRenderbuffer = null; let xrFrame = null; let depthStyle = null; let clearStyle = null; const controllers = []; const inputSourcesMap = new Map(); // const cameraL = new PerspectiveCamera(); cameraL.layers.enable( 1 ); cameraL.viewport = new Vector4(); const cameraR = new PerspectiveCamera(); cameraR.layers.enable( 2 ); cameraR.viewport = new Vector4(); const cameras = [ cameraL, cameraR ]; const cameraVR = new ArrayCamera(); cameraVR.layers.enable( 1 ); cameraVR.layers.enable( 2 ); let _currentDepthNear = null; let _currentDepthFar = null; // this.cameraAutoUpdate = true; this.enabled = false; this.isPresenting = false; this.getController = function ( index ) { let controller = controllers[ index ]; if ( controller === undefined ) { controller = new WebXRController(); controllers[ index ] = controller; } return controller.getTargetRaySpace(); }; this.getControllerGrip = function ( index ) { let controller = controllers[ index ]; if ( controller === undefined ) { controller = new WebXRController(); controllers[ index ] = controller; } return controller.getGripSpace(); }; this.getHand = function ( index ) { let controller = controllers[ index ]; if ( controller === undefined ) { controller = new WebXRController(); controllers[ index ] = controller; } return controller.getHandSpace(); }; // function onSessionEvent( event ) { const controller = inputSourcesMap.get( event.inputSource ); if ( controller ) { controller.dispatchEvent( { type: event.type, data: event.inputSource } ); } } function onSessionEnd() { inputSourcesMap.forEach( function ( controller, inputSource ) { controller.disconnect( inputSource ); } ); inputSourcesMap.clear(); _currentDepthNear = null; _currentDepthFar = null; // restore framebuffer/rendering state state.bindXRFramebuffer( null ); renderer.setRenderTarget( renderer.getRenderTarget() ); if ( glFramebuffer ) gl.deleteFramebuffer( glFramebuffer ); if ( glMultisampledFramebuffer ) gl.deleteFramebuffer( glMultisampledFramebuffer ); if ( glColorRenderbuffer ) gl.deleteRenderbuffer( glColorRenderbuffer ); if ( glDepthRenderbuffer ) gl.deleteRenderbuffer( glDepthRenderbuffer ); glFramebuffer = null; glMultisampledFramebuffer = null; glColorRenderbuffer = null; glDepthRenderbuffer = null; glBaseLayer = null; glProjLayer = null; glBinding = null; session = null; // animation.stop(); scope.isPresenting = false; scope.dispatchEvent( { type: 'sessionend' } ); } this.setFramebufferScaleFactor = function ( value ) { framebufferScaleFactor = value; if ( scope.isPresenting === true ) { console.warn( 'THREE.WebXRManager: Cannot change framebuffer scale while presenting.' ); } }; this.setReferenceSpaceType = function ( value ) { referenceSpaceType = value; if ( scope.isPresenting === true ) { console.warn( 'THREE.WebXRManager: Cannot change reference space type while presenting.' ); } }; this.getReferenceSpace = function () { return referenceSpace; }; this.getBaseLayer = function () { return glProjLayer !== null ? glProjLayer : glBaseLayer; }; this.getBinding = function () { return glBinding; }; this.getFrame = function () { return xrFrame; }; this.getSession = function () { return session; }; this.setSession = async function ( value ) { session = value; if ( session !== null ) { session.addEventListener( 'select', onSessionEvent ); session.addEventListener( 'selectstart', onSessionEvent ); session.addEventListener( 'selectend', onSessionEvent ); session.addEventListener( 'squeeze', onSessionEvent ); session.addEventListener( 'squeezestart', onSessionEvent ); session.addEventListener( 'squeezeend', onSessionEvent ); session.addEventListener( 'end', onSessionEnd ); session.addEventListener( 'inputsourceschange', onInputSourcesChange ); const attributes = gl.getContextAttributes(); if ( attributes.xrCompatible !== true ) { await gl.makeXRCompatible(); } if ( session.renderState.layers === undefined ) { const layerInit = { antialias: attributes.antialias, alpha: attributes.alpha, depth: attributes.depth, stencil: attributes.stencil, framebufferScaleFactor: framebufferScaleFactor }; glBaseLayer = new XRWebGLLayer( session, gl, layerInit ); session.updateRenderState( { baseLayer: glBaseLayer } ); } else if ( gl instanceof WebGLRenderingContext ) { // Use old style webgl layer because we can't use MSAA // WebGL2 support. const layerInit = { antialias: true, alpha: attributes.alpha, depth: attributes.depth, stencil: attributes.stencil, framebufferScaleFactor: framebufferScaleFactor }; glBaseLayer = new XRWebGLLayer( session, gl, layerInit ); session.updateRenderState( { layers: [ glBaseLayer ] } ); } else { isMultisample = attributes.antialias; let depthFormat = null; if ( attributes.depth ) { clearStyle = 256; if ( attributes.stencil ) clearStyle |= 1024; depthStyle = attributes.stencil ? 33306 : 36096; depthFormat = attributes.stencil ? 35056 : 33190; } const projectionlayerInit = { colorFormat: attributes.alpha ? 32856 : 32849, depthFormat: depthFormat, scaleFactor: framebufferScaleFactor }; glBinding = new XRWebGLBinding( session, gl ); glProjLayer = glBinding.createProjectionLayer( projectionlayerInit ); glFramebuffer = gl.createFramebuffer(); session.updateRenderState( { layers: [ glProjLayer ] } ); if ( isMultisample ) { glMultisampledFramebuffer = gl.createFramebuffer(); glColorRenderbuffer = gl.createRenderbuffer(); gl.bindRenderbuffer( 36161, glColorRenderbuffer ); gl.renderbufferStorageMultisample( 36161, 4, 32856, glProjLayer.textureWidth, glProjLayer.textureHeight ); state.bindFramebuffer( 36160, glMultisampledFramebuffer ); gl.framebufferRenderbuffer( 36160, 36064, 36161, glColorRenderbuffer ); gl.bindRenderbuffer( 36161, null ); if ( depthFormat !== null ) { glDepthRenderbuffer = gl.createRenderbuffer(); gl.bindRenderbuffer( 36161, glDepthRenderbuffer ); gl.renderbufferStorageMultisample( 36161, 4, depthFormat, glProjLayer.textureWidth, glProjLayer.textureHeight ); gl.framebufferRenderbuffer( 36160, depthStyle, 36161, glDepthRenderbuffer ); gl.bindRenderbuffer( 36161, null ); } state.bindFramebuffer( 36160, null ); } } referenceSpace = await session.requestReferenceSpace( referenceSpaceType ); animation.setContext( session ); animation.start(); scope.isPresenting = true; scope.dispatchEvent( { type: 'sessionstart' } ); } }; function onInputSourcesChange( event ) { const inputSources = session.inputSources; // Assign inputSources to available controllers for ( let i = 0; i < controllers.length; i ++ ) { inputSourcesMap.set( inputSources[ i ], controllers[ i ] ); } // Notify disconnected for ( let i = 0; i < event.removed.length; i ++ ) { const inputSource = event.removed[ i ]; const controller = inputSourcesMap.get( inputSource ); if ( controller ) { controller.dispatchEvent( { type: 'disconnected', data: inputSource } ); inputSourcesMap.delete( inputSource ); } } // Notify connected for ( let i = 0; i < event.added.length; i ++ ) { const inputSource = event.added[ i ]; const controller = inputSourcesMap.get( inputSource ); if ( controller ) { controller.dispatchEvent( { type: 'connected', data: inputSource } ); } } } // const cameraLPos = new Vector3(); const cameraRPos = new Vector3(); /** * Assumes 2 cameras that are parallel and share an X-axis, and that * the cameras' projection and world matrices have already been set. * And that near and far planes are identical for both cameras. * Visualization of this technique: https://computergraphics.stackexchange.com/a/4765 */ function setProjectionFromUnion( camera, cameraL, cameraR ) { cameraLPos.setFromMatrixPosition( cameraL.matrixWorld ); cameraRPos.setFromMatrixPosition( cameraR.matrixWorld ); const ipd = cameraLPos.distanceTo( cameraRPos ); const projL = cameraL.projectionMatrix.elements; const projR = cameraR.projectionMatrix.elements; // VR systems will have identical far and near planes, and // most likely identical top and bottom frustum extents. // Use the left camera for these values. const near = projL[ 14 ] / ( projL[ 10 ] - 1 ); const far = projL[ 14 ] / ( projL[ 10 ] + 1 ); const topFov = ( projL[ 9 ] + 1 ) / projL[ 5 ]; const bottomFov = ( projL[ 9 ] - 1 ) / projL[ 5 ]; const leftFov = ( projL[ 8 ] - 1 ) / projL[ 0 ]; const rightFov = ( projR[ 8 ] + 1 ) / projR[ 0 ]; const left = near * leftFov; const right = near * rightFov; // Calculate the new camera's position offset from the // left camera. xOffset should be roughly half `ipd`. const zOffset = ipd / ( - leftFov + rightFov ); const xOffset = zOffset * - leftFov; // TODO: Better way to apply this offset? cameraL.matrixWorld.decompose( camera.position, camera.quaternion, camera.scale ); camera.translateX( xOffset ); camera.translateZ( zOffset ); camera.matrixWorld.compose( camera.position, camera.quaternion, camera.scale ); camera.matrixWorldInverse.copy( camera.matrixWorld ).invert(); // Find the union of the frustum values of the cameras and scale // the values so that the near plane's position does not change in world space, // although must now be relative to the new union camera. const near2 = near + zOffset; const far2 = far + zOffset; const left2 = left - xOffset; const right2 = right + ( ipd - xOffset ); const top2 = topFov * far / far2 * near2; const bottom2 = bottomFov * far / far2 * near2; camera.projectionMatrix.makePerspective( left2, right2, top2, bottom2, near2, far2 ); } function updateCamera( camera, parent ) { if ( parent === null ) { camera.matrixWorld.copy( camera.matrix ); } else { camera.matrixWorld.multiplyMatrices( parent.matrixWorld, camera.matrix ); } camera.matrixWorldInverse.copy( camera.matrixWorld ).invert(); } this.updateCamera = function ( camera ) { if ( session === null ) return; cameraVR.near = cameraR.near = cameraL.near = camera.near; cameraVR.far = cameraR.far = cameraL.far = camera.far; if ( _currentDepthNear !== cameraVR.near || _currentDepthFar !== cameraVR.far ) { // Note that the new renderState won't apply until the next frame. See #18320 session.updateRenderState( { depthNear: cameraVR.near, depthFar: cameraVR.far } ); _currentDepthNear = cameraVR.near; _currentDepthFar = cameraVR.far; } const parent = camera.parent; const cameras = cameraVR.cameras; updateCamera( cameraVR, parent ); for ( let i = 0; i < cameras.length; i ++ ) { updateCamera( cameras[ i ], parent ); } cameraVR.matrixWorld.decompose( cameraVR.position, cameraVR.quaternion, cameraVR.scale ); // update user camera and its children camera.position.copy( cameraVR.position ); camera.quaternion.copy( cameraVR.quaternion ); camera.scale.copy( cameraVR.scale ); camera.matrix.copy( cameraVR.matrix ); camera.matrixWorld.copy( cameraVR.matrixWorld ); const children = camera.children; for ( let i = 0, l = children.length; i < l; i ++ ) { children[ i ].updateMatrixWorld( true ); } // update projection matrix for proper view frustum culling if ( cameras.length === 2 ) { setProjectionFromUnion( cameraVR, cameraL, cameraR ); } else { // assume single camera setup (AR) cameraVR.projectionMatrix.copy( cameraL.projectionMatrix ); } }; this.getCamera = function () { return cameraVR; }; this.getFoveation = function () { if ( glProjLayer !== null ) { return glProjLayer.fixedFoveation; } if ( glBaseLayer !== null ) { return glBaseLayer.fixedFoveation; } return undefined; }; this.setFoveation = function ( foveation ) { // 0 = no foveation = full resolution // 1 = maximum foveation = the edges render at lower resolution if ( glProjLayer !== null ) { glProjLayer.fixedFoveation = foveation; } if ( glBaseLayer !== null && glBaseLayer.fixedFoveation !== undefined ) { glBaseLayer.fixedFoveation = foveation; } }; // Animation Loop let onAnimationFrameCallback = null; function onAnimationFrame( time, frame ) { pose = frame.getViewerPose( referenceSpace ); xrFrame = frame; if ( pose !== null ) { const views = pose.views; if ( glBaseLayer !== null ) { state.bindXRFramebuffer( glBaseLayer.framebuffer ); } let cameraVRNeedsUpdate = false; // check if it's necessary to rebuild cameraVR's camera list if ( views.length !== cameraVR.cameras.length ) { cameraVR.cameras.length = 0; cameraVRNeedsUpdate = true; } for ( let i = 0; i < views.length; i ++ ) { const view = views[ i ]; let viewport = null; if ( glBaseLayer !== null ) { viewport = glBaseLayer.getViewport( view ); } else { const glSubImage = glBinding.getViewSubImage( glProjLayer, view ); state.bindXRFramebuffer( glFramebuffer ); if ( glSubImage.depthStencilTexture !== undefined ) { gl.framebufferTexture2D( 36160, depthStyle, 3553, glSubImage.depthStencilTexture, 0 ); } gl.framebufferTexture2D( 36160, 36064, 3553, glSubImage.colorTexture, 0 ); viewport = glSubImage.viewport; } const camera = cameras[ i ]; camera.matrix.fromArray( view.transform.matrix ); camera.projectionMatrix.fromArray( view.projectionMatrix ); camera.viewport.set( viewport.x, viewport.y, viewport.width, viewport.height ); if ( i === 0 ) { cameraVR.matrix.copy( camera.matrix ); } if ( cameraVRNeedsUpdate === true ) { cameraVR.cameras.push( camera ); } } if ( isMultisample ) { state.bindXRFramebuffer( glMultisampledFramebuffer ); if ( clearStyle !== null ) gl.clear( clearStyle ); } } // const inputSources = session.inputSources; for ( let i = 0; i < controllers.length; i ++ ) { const controller = controllers[ i ]; const inputSource = inputSources[ i ]; controller.update( inputSource, frame, referenceSpace ); } if ( onAnimationFrameCallback ) onAnimationFrameCallback( time, frame ); if ( isMultisample ) { const width = glProjLayer.textureWidth; const height = glProjLayer.textureHeight; state.bindFramebuffer( 36008, glMultisampledFramebuffer ); state.bindFramebuffer( 36009, glFramebuffer ); // Invalidate the depth here to avoid flush of the depth data to main memory. gl.invalidateFramebuffer( 36008, [ depthStyle ] ); gl.invalidateFramebuffer( 36009, [ depthStyle ] ); gl.blitFramebuffer( 0, 0, width, height, 0, 0, width, height, 16384, 9728 ); // Invalidate the MSAA buffer because it's not needed anymore. gl.invalidateFramebuffer( 36008, [ 36064 ] ); state.bindFramebuffer( 36008, null ); state.bindFramebuffer( 36009, null ); state.bindFramebuffer( 36160, glMultisampledFramebuffer ); } xrFrame = null; } const animation = new WebGLAnimation(); animation.setAnimationLoop( onAnimationFrame ); this.setAnimationLoop = function ( callback ) { onAnimationFrameCallback = callback; }; this.dispose = function () {}; } } function WebGLMaterials( properties ) { function refreshFogUniforms( uniforms, fog ) { uniforms.fogColor.value.copy( fog.color ); if ( fog.isFog ) { uniforms.fogNear.value = fog.near; uniforms.fogFar.value = fog.far; } else if ( fog.isFogExp2 ) { uniforms.fogDensity.value = fog.density; } } function refreshMaterialUniforms( uniforms, material, pixelRatio, height, transmissionRenderTarget ) { if ( material.isMeshBasicMaterial ) { refreshUniformsCommon( uniforms, material ); } else if ( material.isMeshLambertMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsLambert( uniforms, material ); } else if ( material.isMeshToonMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsToon( uniforms, material ); } else if ( material.isMeshPhongMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsPhong( uniforms, material ); } else if ( material.isMeshStandardMaterial ) { refreshUniformsCommon( uniforms, material ); if ( material.isMeshPhysicalMaterial ) { refreshUniformsPhysical( uniforms, material, transmissionRenderTarget ); } else { refreshUniformsStandard( uniforms, material ); } } else if ( material.isMeshMatcapMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsMatcap( uniforms, material ); } else if ( material.isMeshDepthMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsDepth( uniforms, material ); } else if ( material.isMeshDistanceMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsDistance( uniforms, material ); } else if ( material.isMeshNormalMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsNormal( uniforms, material ); } else if ( material.isLineBasicMaterial ) { refreshUniformsLine( uniforms, material ); if ( material.isLineDashedMaterial ) { refreshUniformsDash( uniforms, material ); } } else if ( material.isPointsMaterial ) { refreshUniformsPoints( uniforms, material, pixelRatio, height ); } else if ( material.isSpriteMaterial ) { refreshUniformsSprites( uniforms, material ); } else if ( material.isShadowMaterial ) { uniforms.color.value.copy( material.color ); uniforms.opacity.value = material.opacity; } else if ( material.isShaderMaterial ) { material.uniformsNeedUpdate = false; // #15581 } } function refreshUniformsCommon( uniforms, material ) { uniforms.opacity.value = material.opacity; if ( material.color ) { uniforms.diffuse.value.copy( material.color ); } if ( material.emissive ) { uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity ); } if ( material.map ) { uniforms.map.value = material.map; } if ( material.alphaMap ) { uniforms.alphaMap.value = material.alphaMap; } if ( material.specularMap ) { uniforms.specularMap.value = material.specularMap; } if ( material.alphaTest > 0 ) { uniforms.alphaTest.value = material.alphaTest; } const envMap = properties.get( material ).envMap; if ( envMap ) { uniforms.envMap.value = envMap; uniforms.flipEnvMap.value = ( envMap.isCubeTexture && envMap.isRenderTargetTexture === false ) ? - 1 : 1; uniforms.reflectivity.value = material.reflectivity; uniforms.ior.value = material.ior; uniforms.refractionRatio.value = material.refractionRatio; const maxMipLevel = properties.get( envMap ).__maxMipLevel; if ( maxMipLevel !== undefined ) { uniforms.maxMipLevel.value = maxMipLevel; } } if ( material.lightMap ) { uniforms.lightMap.value = material.lightMap; uniforms.lightMapIntensity.value = material.lightMapIntensity; } if ( material.aoMap ) { uniforms.aoMap.value = material.aoMap; uniforms.aoMapIntensity.value = material.aoMapIntensity; } // uv repeat and offset setting priorities // 1. color map // 2. specular map // 3. displacementMap map // 4. normal map // 5. bump map // 6. roughnessMap map // 7. metalnessMap map // 8. alphaMap map // 9. emissiveMap map // 10. clearcoat map // 11. clearcoat normal map // 12. clearcoat roughnessMap map // 13. specular intensity map // 14. specular tint map // 15. transmission map // 16. thickness map let uvScaleMap; if ( material.map ) { uvScaleMap = material.map; } else if ( material.specularMap ) { uvScaleMap = material.specularMap; } else if ( material.displacementMap ) { uvScaleMap = material.displacementMap; } else if ( material.normalMap ) { uvScaleMap = material.normalMap; } else if ( material.bumpMap ) { uvScaleMap = material.bumpMap; } else if ( material.roughnessMap ) { uvScaleMap = material.roughnessMap; } else if ( material.metalnessMap ) { uvScaleMap = material.metalnessMap; } else if ( material.alphaMap ) { uvScaleMap = material.alphaMap; } else if ( material.emissiveMap ) { uvScaleMap = material.emissiveMap; } else if ( material.clearcoatMap ) { uvScaleMap = material.clearcoatMap; } else if ( material.clearcoatNormalMap ) { uvScaleMap = material.clearcoatNormalMap; } else if ( material.clearcoatRoughnessMap ) { uvScaleMap = material.clearcoatRoughnessMap; } else if ( material.specularIntensityMap ) { uvScaleMap = material.specularIntensityMap; } else if ( material.specularTintMap ) { uvScaleMap = material.specularTintMap; } else if ( material.transmissionMap ) { uvScaleMap = material.transmissionMap; } else if ( material.thicknessMap ) { uvScaleMap = material.thicknessMap; } if ( uvScaleMap !== undefined ) { // backwards compatibility if ( uvScaleMap.isWebGLRenderTarget ) { uvScaleMap = uvScaleMap.texture; } if ( uvScaleMap.matrixAutoUpdate === true ) { uvScaleMap.updateMatrix(); } uniforms.uvTransform.value.copy( uvScaleMap.matrix ); } // uv repeat and offset setting priorities for uv2 // 1. ao map // 2. light map let uv2ScaleMap; if ( material.aoMap ) { uv2ScaleMap = material.aoMap; } else if ( material.lightMap ) { uv2ScaleMap = material.lightMap; } if ( uv2ScaleMap !== undefined ) { // backwards compatibility if ( uv2ScaleMap.isWebGLRenderTarget ) { uv2ScaleMap = uv2ScaleMap.texture; } if ( uv2ScaleMap.matrixAutoUpdate === true ) { uv2ScaleMap.updateMatrix(); } uniforms.uv2Transform.value.copy( uv2ScaleMap.matrix ); } } function refreshUniformsLine( uniforms, material ) { uniforms.diffuse.value.copy( material.color ); uniforms.opacity.value = material.opacity; } function refreshUniformsDash( uniforms, material ) { uniforms.dashSize.value = material.dashSize; uniforms.totalSize.value = material.dashSize + material.gapSize; uniforms.scale.value = material.scale; } function refreshUniformsPoints( uniforms, material, pixelRatio, height ) { uniforms.diffuse.value.copy( material.color ); uniforms.opacity.value = material.opacity; uniforms.size.value = material.size * pixelRatio; uniforms.scale.value = height * 0.5; if ( material.map ) { uniforms.map.value = material.map; } if ( material.alphaMap ) { uniforms.alphaMap.value = material.alphaMap; } if ( material.alphaTest > 0 ) { uniforms.alphaTest.value = material.alphaTest; } // uv repeat and offset setting priorities // 1. color map // 2. alpha map let uvScaleMap; if ( material.map ) { uvScaleMap = material.map; } else if ( material.alphaMap ) { uvScaleMap = material.alphaMap; } if ( uvScaleMap !== undefined ) { if ( uvScaleMap.matrixAutoUpdate === true ) { uvScaleMap.updateMatrix(); } uniforms.uvTransform.value.copy( uvScaleMap.matrix ); } } function refreshUniformsSprites( uniforms, material ) { uniforms.diffuse.value.copy( material.color ); uniforms.opacity.value = material.opacity; uniforms.rotation.value = material.rotation; if ( material.map ) { uniforms.map.value = material.map; } if ( material.alphaMap ) { uniforms.alphaMap.value = material.alphaMap; } if ( material.alphaTest > 0 ) { uniforms.alphaTest.value = material.alphaTest; } // uv repeat and offset setting priorities // 1. color map // 2. alpha map let uvScaleMap; if ( material.map ) { uvScaleMap = material.map; } else if ( material.alphaMap ) { uvScaleMap = material.alphaMap; } if ( uvScaleMap !== undefined ) { if ( uvScaleMap.matrixAutoUpdate === true ) { uvScaleMap.updateMatrix(); } uniforms.uvTransform.value.copy( uvScaleMap.matrix ); } } function refreshUniformsLambert( uniforms, material ) { if ( material.emissiveMap ) { uniforms.emissiveMap.value = material.emissiveMap; } } function refreshUniformsPhong( uniforms, material ) { uniforms.specular.value.copy( material.specular ); uniforms.shininess.value = Math.max( material.shininess, 1e-4 ); // to prevent pow( 0.0, 0.0 ) if ( material.emissiveMap ) { uniforms.emissiveMap.value = material.emissiveMap; } if ( material.bumpMap ) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; if ( material.side === BackSide ) uniforms.bumpScale.value *= - 1; } if ( material.normalMap ) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); if ( material.side === BackSide ) uniforms.normalScale.value.negate(); } if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } } function refreshUniformsToon( uniforms, material ) { if ( material.gradientMap ) { uniforms.gradientMap.value = material.gradientMap; } if ( material.emissiveMap ) { uniforms.emissiveMap.value = material.emissiveMap; } if ( material.bumpMap ) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; if ( material.side === BackSide ) uniforms.bumpScale.value *= - 1; } if ( material.normalMap ) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); if ( material.side === BackSide ) uniforms.normalScale.value.negate(); } if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } } function refreshUniformsStandard( uniforms, material ) { uniforms.roughness.value = material.roughness; uniforms.metalness.value = material.metalness; if ( material.roughnessMap ) { uniforms.roughnessMap.value = material.roughnessMap; } if ( material.metalnessMap ) { uniforms.metalnessMap.value = material.metalnessMap; } if ( material.emissiveMap ) { uniforms.emissiveMap.value = material.emissiveMap; } if ( material.bumpMap ) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; if ( material.side === BackSide ) uniforms.bumpScale.value *= - 1; } if ( material.normalMap ) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); if ( material.side === BackSide ) uniforms.normalScale.value.negate(); } if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } const envMap = properties.get( material ).envMap; if ( envMap ) { //uniforms.envMap.value = material.envMap; // part of uniforms common uniforms.envMapIntensity.value = material.envMapIntensity; } } function refreshUniformsPhysical( uniforms, material, transmissionRenderTarget ) { refreshUniformsStandard( uniforms, material ); uniforms.ior.value = material.ior; // also part of uniforms common if ( material.sheenTint ) uniforms.sheenTint.value.copy( material.sheenTint ); if ( material.clearcoat > 0 ) { uniforms.clearcoat.value = material.clearcoat; uniforms.clearcoatRoughness.value = material.clearcoatRoughness; if ( material.clearcoatMap ) { uniforms.clearcoatMap.value = material.clearcoatMap; } if ( material.clearcoatRoughnessMap ) { uniforms.clearcoatRoughnessMap.value = material.clearcoatRoughnessMap; } if ( material.clearcoatNormalMap ) { uniforms.clearcoatNormalScale.value.copy( material.clearcoatNormalScale ); uniforms.clearcoatNormalMap.value = material.clearcoatNormalMap; if ( material.side === BackSide ) { uniforms.clearcoatNormalScale.value.negate(); } } } if ( material.transmission > 0 ) { uniforms.transmission.value = material.transmission; uniforms.transmissionSamplerMap.value = transmissionRenderTarget.texture; uniforms.transmissionSamplerSize.value.set( transmissionRenderTarget.width, transmissionRenderTarget.height ); if ( material.transmissionMap ) { uniforms.transmissionMap.value = material.transmissionMap; } uniforms.thickness.value = material.thickness; if ( material.thicknessMap ) { uniforms.thicknessMap.value = material.thicknessMap; } uniforms.attenuationDistance.value = material.attenuationDistance; uniforms.attenuationTint.value.copy( material.attenuationTint ); } uniforms.specularIntensity.value = material.specularIntensity; uniforms.specularTint.value.copy( material.specularTint ); if ( material.specularIntensityMap ) { uniforms.specularIntensityMap.value = material.specularIntensityMap; } if ( material.specularTintMap ) { uniforms.specularTintMap.value = material.specularTintMap; } } function refreshUniformsMatcap( uniforms, material ) { if ( material.matcap ) { uniforms.matcap.value = material.matcap; } if ( material.bumpMap ) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; if ( material.side === BackSide ) uniforms.bumpScale.value *= - 1; } if ( material.normalMap ) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); if ( material.side === BackSide ) uniforms.normalScale.value.negate(); } if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } } function refreshUniformsDepth( uniforms, material ) { if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } } function refreshUniformsDistance( uniforms, material ) { if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } uniforms.referencePosition.value.copy( material.referencePosition ); uniforms.nearDistance.value = material.nearDistance; uniforms.farDistance.value = material.farDistance; } function refreshUniformsNormal( uniforms, material ) { if ( material.bumpMap ) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; if ( material.side === BackSide ) uniforms.bumpScale.value *= - 1; } if ( material.normalMap ) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); if ( material.side === BackSide ) uniforms.normalScale.value.negate(); } if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } } return { refreshFogUniforms: refreshFogUniforms, refreshMaterialUniforms: refreshMaterialUniforms }; } function createCanvasElement() { const canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ); canvas.style.display = 'block'; return canvas; } function WebGLRenderer( parameters = {} ) { const _canvas = parameters.canvas !== undefined ? parameters.canvas : createCanvasElement(), _context = parameters.context !== undefined ? parameters.context : null, _alpha = parameters.alpha !== undefined ? parameters.alpha : false, _depth = parameters.depth !== undefined ? parameters.depth : true, _stencil = parameters.stencil !== undefined ? parameters.stencil : true, _antialias = parameters.antialias !== undefined ? parameters.antialias : false, _premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true, _preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false, _powerPreference = parameters.powerPreference !== undefined ? parameters.powerPreference : 'default', _failIfMajorPerformanceCaveat = parameters.failIfMajorPerformanceCaveat !== undefined ? parameters.failIfMajorPerformanceCaveat : false; let currentRenderList = null; let currentRenderState = null; // render() can be called from within a callback triggered by another render. // We track this so that the nested render call gets its list and state isolated from the parent render call. const renderListStack = []; const renderStateStack = []; // public properties this.domElement = _canvas; // Debug configuration container this.debug = { /** * Enables error checking and reporting when shader programs are being compiled * @type {boolean} */ checkShaderErrors: true }; // clearing this.autoClear = true; this.autoClearColor = true; this.autoClearDepth = true; this.autoClearStencil = true; // scene graph this.sortObjects = true; // user-defined clipping this.clippingPlanes = []; this.localClippingEnabled = false; // physically based shading this.gammaFactor = 2.0; // for backwards compatibility this.outputEncoding = LinearEncoding; // physical lights this.physicallyCorrectLights = false; // tone mapping this.toneMapping = NoToneMapping; this.toneMappingExposure = 1.0; // internal properties const _this = this; let _isContextLost = false; // internal state cache let _currentActiveCubeFace = 0; let _currentActiveMipmapLevel = 0; let _currentRenderTarget = null; let _currentMaterialId = - 1; let _currentCamera = null; const _currentViewport = new Vector4(); const _currentScissor = new Vector4(); let _currentScissorTest = null; // let _width = _canvas.width; let _height = _canvas.height; let _pixelRatio = 1; let _opaqueSort = null; let _transparentSort = null; const _viewport = new Vector4( 0, 0, _width, _height ); const _scissor = new Vector4( 0, 0, _width, _height ); let _scissorTest = false; // const _currentDrawBuffers = []; // frustum const _frustum = new Frustum(); // clipping let _clippingEnabled = false; let _localClippingEnabled = false; // transmission let _transmissionRenderTarget = null; // camera matrices cache const _projScreenMatrix = new Matrix4(); const _vector3 = new Vector3(); const _emptyScene = { background: null, fog: null, environment: null, overrideMaterial: null, isScene: true }; function getTargetPixelRatio() { return _currentRenderTarget === null ? _pixelRatio : 1; } // initialize let _gl = _context; function getContext( contextNames, contextAttributes ) { for ( let i = 0; i < contextNames.length; i ++ ) { const contextName = contextNames[ i ]; const context = _canvas.getContext( contextName, contextAttributes ); if ( context !== null ) return context; } return null; } try { const contextAttributes = { alpha: _alpha, depth: _depth, stencil: _stencil, antialias: _antialias, premultipliedAlpha: _premultipliedAlpha, preserveDrawingBuffer: _preserveDrawingBuffer, powerPreference: _powerPreference, failIfMajorPerformanceCaveat: _failIfMajorPerformanceCaveat }; // event listeners must be registered before WebGL context is created, see #12753 _canvas.addEventListener( 'webglcontextlost', onContextLost, false ); _canvas.addEventListener( 'webglcontextrestored', onContextRestore, false ); if ( _gl === null ) { const contextNames = [ 'webgl2', 'webgl', 'experimental-webgl' ]; if ( _this.isWebGL1Renderer === true ) { contextNames.shift(); } _gl = getContext( contextNames, contextAttributes ); if ( _gl === null ) { if ( getContext( contextNames ) ) { throw new Error( 'Error creating WebGL context with your selected attributes.' ); } else { throw new Error( 'Error creating WebGL context.' ); } } } // Some experimental-webgl implementations do not have getShaderPrecisionFormat if ( _gl.getShaderPrecisionFormat === undefined ) { _gl.getShaderPrecisionFormat = function () { return { 'rangeMin': 1, 'rangeMax': 1, 'precision': 1 }; }; } } catch ( error ) { console.error( 'THREE.WebGLRenderer: ' + error.message ); throw error; } let extensions, capabilities, state, info; let properties, textures, cubemaps, cubeuvmaps, attributes, geometries, objects; let programCache, materials, renderLists, renderStates, clipping, shadowMap; let background, morphtargets, bufferRenderer, indexedBufferRenderer; let utils, bindingStates; function initGLContext() { extensions = new WebGLExtensions( _gl ); capabilities = new WebGLCapabilities( _gl, extensions, parameters ); extensions.init( capabilities ); utils = new WebGLUtils( _gl, extensions, capabilities ); state = new WebGLState( _gl, extensions, capabilities ); _currentDrawBuffers[ 0 ] = 1029; info = new WebGLInfo( _gl ); properties = new WebGLProperties(); textures = new WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info ); cubemaps = new WebGLCubeMaps( _this ); cubeuvmaps = new WebGLCubeUVMaps( _this ); attributes = new WebGLAttributes( _gl, capabilities ); bindingStates = new WebGLBindingStates( _gl, extensions, attributes, capabilities ); geometries = new WebGLGeometries( _gl, attributes, info, bindingStates ); objects = new WebGLObjects( _gl, geometries, attributes, info ); morphtargets = new WebGLMorphtargets( _gl ); clipping = new WebGLClipping( properties ); programCache = new WebGLPrograms( _this, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping ); materials = new WebGLMaterials( properties ); renderLists = new WebGLRenderLists( properties ); renderStates = new WebGLRenderStates( extensions, capabilities ); background = new WebGLBackground( _this, cubemaps, state, objects, _premultipliedAlpha ); shadowMap = new WebGLShadowMap( _this, objects, capabilities ); bufferRenderer = new WebGLBufferRenderer( _gl, extensions, info, capabilities ); indexedBufferRenderer = new WebGLIndexedBufferRenderer( _gl, extensions, info, capabilities ); info.programs = programCache.programs; _this.capabilities = capabilities; _this.extensions = extensions; _this.properties = properties; _this.renderLists = renderLists; _this.shadowMap = shadowMap; _this.state = state; _this.info = info; } initGLContext(); // xr const xr = new WebXRManager( _this, _gl ); this.xr = xr; // API this.getContext = function () { return _gl; }; this.getContextAttributes = function () { return _gl.getContextAttributes(); }; this.forceContextLoss = function () { const extension = extensions.get( 'WEBGL_lose_context' ); if ( extension ) extension.loseContext(); }; this.forceContextRestore = function () { const extension = extensions.get( 'WEBGL_lose_context' ); if ( extension ) extension.restoreContext(); }; this.getPixelRatio = function () { return _pixelRatio; }; this.setPixelRatio = function ( value ) { if ( value === undefined ) return; _pixelRatio = value; this.setSize( _width, _height, false ); }; this.getSize = function ( target ) { return target.set( _width, _height ); }; this.setSize = function ( width, height, updateStyle ) { if ( xr.isPresenting ) { console.warn( 'THREE.WebGLRenderer: Can\'t change size while VR device is presenting.' ); return; } _width = width; _height = height; _canvas.width = Math.floor( width * _pixelRatio ); _canvas.height = Math.floor( height * _pixelRatio ); if ( updateStyle !== false ) { _canvas.style.width = width + 'px'; _canvas.style.height = height + 'px'; } this.setViewport( 0, 0, width, height ); }; this.getDrawingBufferSize = function ( target ) { return target.set( _width * _pixelRatio, _height * _pixelRatio ).floor(); }; this.setDrawingBufferSize = function ( width, height, pixelRatio ) { _width = width; _height = height; _pixelRatio = pixelRatio; _canvas.width = Math.floor( width * pixelRatio ); _canvas.height = Math.floor( height * pixelRatio ); this.setViewport( 0, 0, width, height ); }; this.getCurrentViewport = function ( target ) { return target.copy( _currentViewport ); }; this.getViewport = function ( target ) { return target.copy( _viewport ); }; this.setViewport = function ( x, y, width, height ) { if ( x.isVector4 ) { _viewport.set( x.x, x.y, x.z, x.w ); } else { _viewport.set( x, y, width, height ); } state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor() ); }; this.getScissor = function ( target ) { return target.copy( _scissor ); }; this.setScissor = function ( x, y, width, height ) { if ( x.isVector4 ) { _scissor.set( x.x, x.y, x.z, x.w ); } else { _scissor.set( x, y, width, height ); } state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor() ); }; this.getScissorTest = function () { return _scissorTest; }; this.setScissorTest = function ( boolean ) { state.setScissorTest( _scissorTest = boolean ); }; this.setOpaqueSort = function ( method ) { _opaqueSort = method; }; this.setTransparentSort = function ( method ) { _transparentSort = method; }; // Clearing this.getClearColor = function ( target ) { return target.copy( background.getClearColor() ); }; this.setClearColor = function () { background.setClearColor.apply( background, arguments ); }; this.getClearAlpha = function () { return background.getClearAlpha(); }; this.setClearAlpha = function () { background.setClearAlpha.apply( background, arguments ); }; this.clear = function ( color, depth, stencil ) { let bits = 0; if ( color === undefined || color ) bits |= 16384; if ( depth === undefined || depth ) bits |= 256; if ( stencil === undefined || stencil ) bits |= 1024; _gl.clear( bits ); }; this.clearColor = function () { this.clear( true, false, false ); }; this.clearDepth = function () { this.clear( false, true, false ); }; this.clearStencil = function () { this.clear( false, false, true ); }; // this.dispose = function () { _canvas.removeEventListener( 'webglcontextlost', onContextLost, false ); _canvas.removeEventListener( 'webglcontextrestored', onContextRestore, false ); renderLists.dispose(); renderStates.dispose(); properties.dispose(); cubemaps.dispose(); cubeuvmaps.dispose(); objects.dispose(); bindingStates.dispose(); xr.dispose(); xr.removeEventListener( 'sessionstart', onXRSessionStart ); xr.removeEventListener( 'sessionend', onXRSessionEnd ); if ( _transmissionRenderTarget ) { _transmissionRenderTarget.dispose(); _transmissionRenderTarget = null; } animation.stop(); }; // Events function onContextLost( event ) { event.preventDefault(); console.log( 'THREE.WebGLRenderer: Context Lost.' ); _isContextLost = true; } function onContextRestore( /* event */ ) { console.log( 'THREE.WebGLRenderer: Context Restored.' ); _isContextLost = false; const infoAutoReset = info.autoReset; const shadowMapEnabled = shadowMap.enabled; const shadowMapAutoUpdate = shadowMap.autoUpdate; const shadowMapNeedsUpdate = shadowMap.needsUpdate; const shadowMapType = shadowMap.type; initGLContext(); info.autoReset = infoAutoReset; shadowMap.enabled = shadowMapEnabled; shadowMap.autoUpdate = shadowMapAutoUpdate; shadowMap.needsUpdate = shadowMapNeedsUpdate; shadowMap.type = shadowMapType; } function onMaterialDispose( event ) { const material = event.target; material.removeEventListener( 'dispose', onMaterialDispose ); deallocateMaterial( material ); } // Buffer deallocation function deallocateMaterial( material ) { releaseMaterialProgramReferences( material ); properties.remove( material ); } function releaseMaterialProgramReferences( material ) { const programs = properties.get( material ).programs; if ( programs !== undefined ) { programs.forEach( function ( program ) { programCache.releaseProgram( program ); } ); } } // Buffer rendering function renderObjectImmediate( object, program ) { object.render( function ( object ) { _this.renderBufferImmediate( object, program ); } ); } this.renderBufferImmediate = function ( object, program ) { bindingStates.initAttributes(); const buffers = properties.get( object ); if ( object.hasPositions && ! buffers.position ) buffers.position = _gl.createBuffer(); if ( object.hasNormals && ! buffers.normal ) buffers.normal = _gl.createBuffer(); if ( object.hasUvs && ! buffers.uv ) buffers.uv = _gl.createBuffer(); if ( object.hasColors && ! buffers.color ) buffers.color = _gl.createBuffer(); const programAttributes = program.getAttributes(); if ( object.hasPositions ) { _gl.bindBuffer( 34962, buffers.position ); _gl.bufferData( 34962, object.positionArray, 35048 ); bindingStates.enableAttribute( programAttributes.position.location ); _gl.vertexAttribPointer( programAttributes.position.location, 3, 5126, false, 0, 0 ); } if ( object.hasNormals ) { _gl.bindBuffer( 34962, buffers.normal ); _gl.bufferData( 34962, object.normalArray, 35048 ); bindingStates.enableAttribute( programAttributes.normal.location ); _gl.vertexAttribPointer( programAttributes.normal.location, 3, 5126, false, 0, 0 ); } if ( object.hasUvs ) { _gl.bindBuffer( 34962, buffers.uv ); _gl.bufferData( 34962, object.uvArray, 35048 ); bindingStates.enableAttribute( programAttributes.uv.location ); _gl.vertexAttribPointer( programAttributes.uv.location, 2, 5126, false, 0, 0 ); } if ( object.hasColors ) { _gl.bindBuffer( 34962, buffers.color ); _gl.bufferData( 34962, object.colorArray, 35048 ); bindingStates.enableAttribute( programAttributes.color.location ); _gl.vertexAttribPointer( programAttributes.color.location, 3, 5126, false, 0, 0 ); } bindingStates.disableUnusedAttributes(); _gl.drawArrays( 4, 0, object.count ); object.count = 0; }; this.renderBufferDirect = function ( camera, scene, geometry, material, object, group ) { if ( scene === null ) scene = _emptyScene; // renderBufferDirect second parameter used to be fog (could be null) const frontFaceCW = ( object.isMesh && object.matrixWorld.determinant() < 0 ); const program = setProgram( camera, scene, material, object ); state.setMaterial( material, frontFaceCW ); // let index = geometry.index; const position = geometry.attributes.position; // if ( index === null ) { if ( position === undefined || position.count === 0 ) return; } else if ( index.count === 0 ) { return; } // let rangeFactor = 1; if ( material.wireframe === true ) { index = geometries.getWireframeAttribute( geometry ); rangeFactor = 2; } if ( geometry.morphAttributes.position !== undefined || geometry.morphAttributes.normal !== undefined ) { morphtargets.update( object, geometry, material, program ); } bindingStates.setup( object, material, program, geometry, index ); let attribute; let renderer = bufferRenderer; if ( index !== null ) { attribute = attributes.get( index ); renderer = indexedBufferRenderer; renderer.setIndex( attribute ); } // const dataCount = ( index !== null ) ? index.count : position.count; const rangeStart = geometry.drawRange.start * rangeFactor; const rangeCount = geometry.drawRange.count * rangeFactor; const groupStart = group !== null ? group.start * rangeFactor : 0; const groupCount = group !== null ? group.count * rangeFactor : Infinity; const drawStart = Math.max( rangeStart, groupStart ); const drawEnd = Math.min( dataCount, rangeStart + rangeCount, groupStart + groupCount ) - 1; const drawCount = Math.max( 0, drawEnd - drawStart + 1 ); if ( drawCount === 0 ) return; // if ( object.isMesh ) { if ( material.wireframe === true ) { state.setLineWidth( material.wireframeLinewidth * getTargetPixelRatio() ); renderer.setMode( 1 ); } else { renderer.setMode( 4 ); } } else if ( object.isLine ) { let lineWidth = material.linewidth; if ( lineWidth === undefined ) lineWidth = 1; // Not using Line*Material state.setLineWidth( lineWidth * getTargetPixelRatio() ); if ( object.isLineSegments ) { renderer.setMode( 1 ); } else if ( object.isLineLoop ) { renderer.setMode( 2 ); } else { renderer.setMode( 3 ); } } else if ( object.isPoints ) { renderer.setMode( 0 ); } else if ( object.isSprite ) { renderer.setMode( 4 ); } if ( object.isInstancedMesh ) { renderer.renderInstances( drawStart, drawCount, object.count ); } else if ( geometry.isInstancedBufferGeometry ) { const instanceCount = Math.min( geometry.instanceCount, geometry._maxInstanceCount ); renderer.renderInstances( drawStart, drawCount, instanceCount ); } else { renderer.render( drawStart, drawCount ); } }; // Compile this.compile = function ( scene, camera ) { currentRenderState = renderStates.get( scene ); currentRenderState.init(); renderStateStack.push( currentRenderState ); scene.traverseVisible( function ( object ) { if ( object.isLight && object.layers.test( camera.layers ) ) { currentRenderState.pushLight( object ); if ( object.castShadow ) { currentRenderState.pushShadow( object ); } } } ); currentRenderState.setupLights( _this.physicallyCorrectLights ); scene.traverse( function ( object ) { const material = object.material; if ( material ) { if ( Array.isArray( material ) ) { for ( let i = 0; i < material.length; i ++ ) { const material2 = material[ i ]; getProgram( material2, scene, object ); } } else { getProgram( material, scene, object ); } } } ); renderStateStack.pop(); currentRenderState = null; }; // Animation Loop let onAnimationFrameCallback = null; function onAnimationFrame( time ) { if ( onAnimationFrameCallback ) onAnimationFrameCallback( time ); } function onXRSessionStart() { animation.stop(); } function onXRSessionEnd() { animation.start(); } const animation = new WebGLAnimation(); animation.setAnimationLoop( onAnimationFrame ); if ( typeof window !== 'undefined' ) animation.setContext( window ); this.setAnimationLoop = function ( callback ) { onAnimationFrameCallback = callback; xr.setAnimationLoop( callback ); ( callback === null ) ? animation.stop() : animation.start(); }; xr.addEventListener( 'sessionstart', onXRSessionStart ); xr.addEventListener( 'sessionend', onXRSessionEnd ); // Rendering this.render = function ( scene, camera ) { if ( camera !== undefined && camera.isCamera !== true ) { console.error( 'THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.' ); return; } if ( _isContextLost === true ) return; // update scene graph if ( scene.autoUpdate === true ) scene.updateMatrixWorld(); // update camera matrices and frustum if ( camera.parent === null ) camera.updateMatrixWorld(); if ( xr.enabled === true && xr.isPresenting === true ) { if ( xr.cameraAutoUpdate === true ) xr.updateCamera( camera ); camera = xr.getCamera(); // use XR camera for rendering } // if ( scene.isScene === true ) scene.onBeforeRender( _this, scene, camera, _currentRenderTarget ); currentRenderState = renderStates.get( scene, renderStateStack.length ); currentRenderState.init(); renderStateStack.push( currentRenderState ); _projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ); _frustum.setFromProjectionMatrix( _projScreenMatrix ); _localClippingEnabled = this.localClippingEnabled; _clippingEnabled = clipping.init( this.clippingPlanes, _localClippingEnabled, camera ); currentRenderList = renderLists.get( scene, renderListStack.length ); currentRenderList.init(); renderListStack.push( currentRenderList ); projectObject( scene, camera, 0, _this.sortObjects ); currentRenderList.finish(); if ( _this.sortObjects === true ) { currentRenderList.sort( _opaqueSort, _transparentSort ); } // if ( _clippingEnabled === true ) clipping.beginShadows(); const shadowsArray = currentRenderState.state.shadowsArray; shadowMap.render( shadowsArray, scene, camera ); if ( _clippingEnabled === true ) clipping.endShadows(); // if ( this.info.autoReset === true ) this.info.reset(); // background.render( currentRenderList, scene ); // render scene currentRenderState.setupLights( _this.physicallyCorrectLights ); if ( camera.isArrayCamera ) { const cameras = camera.cameras; for ( let i = 0, l = cameras.length; i < l; i ++ ) { const camera2 = cameras[ i ]; renderScene( currentRenderList, scene, camera2, camera2.viewport ); } } else { renderScene( currentRenderList, scene, camera ); } // if ( _currentRenderTarget !== null ) { // resolve multisample renderbuffers to a single-sample texture if necessary textures.updateMultisampleRenderTarget( _currentRenderTarget ); // Generate mipmap if we're using any kind of mipmap filtering textures.updateRenderTargetMipmap( _currentRenderTarget ); } // if ( scene.isScene === true ) scene.onAfterRender( _this, scene, camera ); // Ensure depth buffer writing is enabled so it can be cleared on next render state.buffers.depth.setTest( true ); state.buffers.depth.setMask( true ); state.buffers.color.setMask( true ); state.setPolygonOffset( false ); // _gl.finish(); bindingStates.resetDefaultState(); _currentMaterialId = - 1; _currentCamera = null; renderStateStack.pop(); if ( renderStateStack.length > 0 ) { currentRenderState = renderStateStack[ renderStateStack.length - 1 ]; } else { currentRenderState = null; } renderListStack.pop(); if ( renderListStack.length > 0 ) { currentRenderList = renderListStack[ renderListStack.length - 1 ]; } else { currentRenderList = null; } }; function projectObject( object, camera, groupOrder, sortObjects ) { if ( object.visible === false ) return; const visible = object.layers.test( camera.layers ); if ( visible ) { if ( object.isGroup ) { groupOrder = object.renderOrder; } else if ( object.isLOD ) { if ( object.autoUpdate === true ) object.update( camera ); } else if ( object.isLight ) { currentRenderState.pushLight( object ); if ( object.castShadow ) { currentRenderState.pushShadow( object ); } } else if ( object.isSprite ) { if ( ! object.frustumCulled || _frustum.intersectsSprite( object ) ) { if ( sortObjects ) { _vector3.setFromMatrixPosition( object.matrixWorld ) .applyMatrix4( _projScreenMatrix ); } const geometry = objects.update( object ); const material = object.material; if ( material.visible ) { currentRenderList.push( object, geometry, material, groupOrder, _vector3.z, null ); } } } else if ( object.isImmediateRenderObject ) { if ( sortObjects ) { _vector3.setFromMatrixPosition( object.matrixWorld ) .applyMatrix4( _projScreenMatrix ); } currentRenderList.push( object, null, object.material, groupOrder, _vector3.z, null ); } else if ( object.isMesh || object.isLine || object.isPoints ) { if ( object.isSkinnedMesh ) { // update skeleton only once in a frame if ( object.skeleton.frame !== info.render.frame ) { object.skeleton.update(); object.skeleton.frame = info.render.frame; } } if ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) { if ( sortObjects ) { _vector3.setFromMatrixPosition( object.matrixWorld ) .applyMatrix4( _projScreenMatrix ); } const geometry = objects.update( object ); const material = object.material; if ( Array.isArray( material ) ) { const groups = geometry.groups; for ( let i = 0, l = groups.length; i < l; i ++ ) { const group = groups[ i ]; const groupMaterial = material[ group.materialIndex ]; if ( groupMaterial && groupMaterial.visible ) { currentRenderList.push( object, geometry, groupMaterial, groupOrder, _vector3.z, group ); } } } else if ( material.visible ) { currentRenderList.push( object, geometry, material, groupOrder, _vector3.z, null ); } } } } const children = object.children; for ( let i = 0, l = children.length; i < l; i ++ ) { projectObject( children[ i ], camera, groupOrder, sortObjects ); } } function renderScene( currentRenderList, scene, camera, viewport ) { const opaqueObjects = currentRenderList.opaque; const transmissiveObjects = currentRenderList.transmissive; const transparentObjects = currentRenderList.transparent; currentRenderState.setupLightsView( camera ); if ( transmissiveObjects.length > 0 ) renderTransmissionPass( opaqueObjects, scene, camera ); if ( viewport ) state.viewport( _currentViewport.copy( viewport ) ); if ( opaqueObjects.length > 0 ) renderObjects( opaqueObjects, scene, camera ); if ( transmissiveObjects.length > 0 ) renderObjects( transmissiveObjects, scene, camera ); if ( transparentObjects.length > 0 ) renderObjects( transparentObjects, scene, camera ); } function renderTransmissionPass( opaqueObjects, scene, camera ) { if ( _transmissionRenderTarget === null ) { const needsAntialias = _antialias === true && capabilities.isWebGL2 === true; const renderTargetType = needsAntialias ? WebGLMultisampleRenderTarget : WebGLRenderTarget; _transmissionRenderTarget = new renderTargetType( 1024, 1024, { generateMipmaps: true, type: utils.convert( HalfFloatType ) !== null ? HalfFloatType : UnsignedByteType, minFilter: LinearMipmapLinearFilter, magFilter: NearestFilter, wrapS: ClampToEdgeWrapping, wrapT: ClampToEdgeWrapping } ); } const currentRenderTarget = _this.getRenderTarget(); _this.setRenderTarget( _transmissionRenderTarget ); _this.clear(); // Turn off the features which can affect the frag color for opaque objects pass. // Otherwise they are applied twice in opaque objects pass and transmission objects pass. const currentToneMapping = _this.toneMapping; _this.toneMapping = NoToneMapping; renderObjects( opaqueObjects, scene, camera ); _this.toneMapping = currentToneMapping; textures.updateMultisampleRenderTarget( _transmissionRenderTarget ); textures.updateRenderTargetMipmap( _transmissionRenderTarget ); _this.setRenderTarget( currentRenderTarget ); } function renderObjects( renderList, scene, camera ) { const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null; for ( let i = 0, l = renderList.length; i < l; i ++ ) { const renderItem = renderList[ i ]; const object = renderItem.object; const geometry = renderItem.geometry; const material = overrideMaterial === null ? renderItem.material : overrideMaterial; const group = renderItem.group; if ( object.layers.test( camera.layers ) ) { renderObject( object, scene, camera, geometry, material, group ); } } } function renderObject( object, scene, camera, geometry, material, group ) { object.onBeforeRender( _this, scene, camera, geometry, material, group ); object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld ); object.normalMatrix.getNormalMatrix( object.modelViewMatrix ); if ( object.isImmediateRenderObject ) { const program = setProgram( camera, scene, material, object ); state.setMaterial( material ); bindingStates.reset(); renderObjectImmediate( object, program ); } else { if ( material.transparent === true && material.side === DoubleSide ) { material.side = BackSide; material.needsUpdate = true; _this.renderBufferDirect( camera, scene, geometry, material, object, group ); material.side = FrontSide; material.needsUpdate = true; _this.renderBufferDirect( camera, scene, geometry, material, object, group ); material.side = DoubleSide; } else { _this.renderBufferDirect( camera, scene, geometry, material, object, group ); } } object.onAfterRender( _this, scene, camera, geometry, material, group ); } function getProgram( material, scene, object ) { if ( scene.isScene !== true ) scene = _emptyScene; // scene could be a Mesh, Line, Points, ... const materialProperties = properties.get( material ); const lights = currentRenderState.state.lights; const shadowsArray = currentRenderState.state.shadowsArray; const lightsStateVersion = lights.state.version; const parameters = programCache.getParameters( material, lights.state, shadowsArray, scene, object ); const programCacheKey = programCache.getProgramCacheKey( parameters ); let programs = materialProperties.programs; // always update environment and fog - changing these trigger an getProgram call, but it's possible that the program doesn't change materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null; materialProperties.fog = scene.fog; materialProperties.envMap = ( material.isMeshStandardMaterial ? cubeuvmaps : cubemaps ).get( material.envMap || materialProperties.environment ); if ( programs === undefined ) { // new material material.addEventListener( 'dispose', onMaterialDispose ); programs = new Map(); materialProperties.programs = programs; } let program = programs.get( programCacheKey ); if ( program !== undefined ) { // early out if program and light state is identical if ( materialProperties.currentProgram === program && materialProperties.lightsStateVersion === lightsStateVersion ) { updateCommonMaterialProperties( material, parameters ); return program; } } else { parameters.uniforms = programCache.getUniforms( material ); material.onBuild( parameters, _this ); material.onBeforeCompile( parameters, _this ); program = programCache.acquireProgram( parameters, programCacheKey ); programs.set( programCacheKey, program ); materialProperties.uniforms = parameters.uniforms; } const uniforms = materialProperties.uniforms; if ( ( ! material.isShaderMaterial && ! material.isRawShaderMaterial ) || material.clipping === true ) { uniforms.clippingPlanes = clipping.uniform; } updateCommonMaterialProperties( material, parameters ); // store the light setup it was created for materialProperties.needsLights = materialNeedsLights( material ); materialProperties.lightsStateVersion = lightsStateVersion; if ( materialProperties.needsLights ) { // wire up the material to this renderer's lighting state uniforms.ambientLightColor.value = lights.state.ambient; uniforms.lightProbe.value = lights.state.probe; uniforms.directionalLights.value = lights.state.directional; uniforms.directionalLightShadows.value = lights.state.directionalShadow; uniforms.spotLights.value = lights.state.spot; uniforms.spotLightShadows.value = lights.state.spotShadow; uniforms.rectAreaLights.value = lights.state.rectArea; uniforms.ltc_1.value = lights.state.rectAreaLTC1; uniforms.ltc_2.value = lights.state.rectAreaLTC2; uniforms.pointLights.value = lights.state.point; uniforms.pointLightShadows.value = lights.state.pointShadow; uniforms.hemisphereLights.value = lights.state.hemi; uniforms.directionalShadowMap.value = lights.state.directionalShadowMap; uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix; uniforms.spotShadowMap.value = lights.state.spotShadowMap; uniforms.spotShadowMatrix.value = lights.state.spotShadowMatrix; uniforms.pointShadowMap.value = lights.state.pointShadowMap; uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix; // TODO (abelnation): add area lights shadow info to uniforms } const progUniforms = program.getUniforms(); const uniformsList = WebGLUniforms.seqWithValue( progUniforms.seq, uniforms ); materialProperties.currentProgram = program; materialProperties.uniformsList = uniformsList; return program; } function updateCommonMaterialProperties( material, parameters ) { const materialProperties = properties.get( material ); materialProperties.outputEncoding = parameters.outputEncoding; materialProperties.instancing = parameters.instancing; materialProperties.skinning = parameters.skinning; materialProperties.morphTargets = parameters.morphTargets; materialProperties.morphNormals = parameters.morphNormals; materialProperties.numClippingPlanes = parameters.numClippingPlanes; materialProperties.numIntersection = parameters.numClipIntersection; materialProperties.vertexAlphas = parameters.vertexAlphas; materialProperties.vertexTangents = parameters.vertexTangents; } function setProgram( camera, scene, material, object ) { if ( scene.isScene !== true ) scene = _emptyScene; // scene could be a Mesh, Line, Points, ... textures.resetTextureUnits(); const fog = scene.fog; const environment = material.isMeshStandardMaterial ? scene.environment : null; const encoding = ( _currentRenderTarget === null ) ? _this.outputEncoding : _currentRenderTarget.texture.encoding; const envMap = ( material.isMeshStandardMaterial ? cubeuvmaps : cubemaps ).get( material.envMap || environment ); const vertexAlphas = material.vertexColors === true && !! object.geometry && !! object.geometry.attributes.color && object.geometry.attributes.color.itemSize === 4; const vertexTangents = !! object.geometry && !! object.geometry.attributes.tangent; const morphTargets = !! object.geometry && !! object.geometry.morphAttributes.position; const morphNormals = !! object.geometry && !! object.geometry.morphAttributes.normal; const materialProperties = properties.get( material ); const lights = currentRenderState.state.lights; if ( _clippingEnabled === true ) { if ( _localClippingEnabled === true || camera !== _currentCamera ) { const useCache = camera === _currentCamera && material.id === _currentMaterialId; // we might want to call this function with some ClippingGroup // object instead of the material, once it becomes feasible // (#8465, #8379) clipping.setState( material, camera, useCache ); } } // let needsProgramChange = false; if ( material.version === materialProperties.__version ) { if ( materialProperties.needsLights && ( materialProperties.lightsStateVersion !== lights.state.version ) ) { needsProgramChange = true; } else if ( materialProperties.outputEncoding !== encoding ) { needsProgramChange = true; } else if ( object.isInstancedMesh && materialProperties.instancing === false ) { needsProgramChange = true; } else if ( ! object.isInstancedMesh && materialProperties.instancing === true ) { needsProgramChange = true; } else if ( object.isSkinnedMesh && materialProperties.skinning === false ) { needsProgramChange = true; } else if ( ! object.isSkinnedMesh && materialProperties.skinning === true ) { needsProgramChange = true; } else if ( materialProperties.envMap !== envMap ) { needsProgramChange = true; } else if ( material.fog && materialProperties.fog !== fog ) { needsProgramChange = true; } else if ( materialProperties.numClippingPlanes !== undefined && ( materialProperties.numClippingPlanes !== clipping.numPlanes || materialProperties.numIntersection !== clipping.numIntersection ) ) { needsProgramChange = true; } else if ( materialProperties.vertexAlphas !== vertexAlphas ) { needsProgramChange = true; } else if ( materialProperties.vertexTangents !== vertexTangents ) { needsProgramChange = true; } else if ( materialProperties.morphTargets !== morphTargets ) { needsProgramChange = true; } else if ( materialProperties.morphNormals !== morphNormals ) { needsProgramChange = true; } } else { needsProgramChange = true; materialProperties.__version = material.version; } // let program = materialProperties.currentProgram; if ( needsProgramChange === true ) { program = getProgram( material, scene, object ); } let refreshProgram = false; let refreshMaterial = false; let refreshLights = false; const p_uniforms = program.getUniforms(), m_uniforms = materialProperties.uniforms; if ( state.useProgram( program.program ) ) { refreshProgram = true; refreshMaterial = true; refreshLights = true; } if ( material.id !== _currentMaterialId ) { _currentMaterialId = material.id; refreshMaterial = true; } if ( refreshProgram || _currentCamera !== camera ) { p_uniforms.setValue( _gl, 'projectionMatrix', camera.projectionMatrix ); if ( capabilities.logarithmicDepthBuffer ) { p_uniforms.setValue( _gl, 'logDepthBufFC', 2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) ); } if ( _currentCamera !== camera ) { _currentCamera = camera; // lighting uniforms depend on the camera so enforce an update // now, in case this material supports lights - or later, when // the next material that does gets activated: refreshMaterial = true; // set to true on material change refreshLights = true; // remains set until update done } // load material specific uniforms // (shader material also gets them for the sake of genericity) if ( material.isShaderMaterial || material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshStandardMaterial || material.envMap ) { const uCamPos = p_uniforms.map.cameraPosition; if ( uCamPos !== undefined ) { uCamPos.setValue( _gl, _vector3.setFromMatrixPosition( camera.matrixWorld ) ); } } if ( material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial ) { p_uniforms.setValue( _gl, 'isOrthographic', camera.isOrthographicCamera === true ); } if ( material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial || material.isShadowMaterial || object.isSkinnedMesh ) { p_uniforms.setValue( _gl, 'viewMatrix', camera.matrixWorldInverse ); } } // skinning uniforms must be set even if material didn't change // auto-setting of texture unit for bone texture must go before other textures // otherwise textures used for skinning can take over texture units reserved for other material textures if ( object.isSkinnedMesh ) { p_uniforms.setOptional( _gl, object, 'bindMatrix' ); p_uniforms.setOptional( _gl, object, 'bindMatrixInverse' ); const skeleton = object.skeleton; if ( skeleton ) { if ( capabilities.floatVertexTextures ) { if ( skeleton.boneTexture === null ) skeleton.computeBoneTexture(); p_uniforms.setValue( _gl, 'boneTexture', skeleton.boneTexture, textures ); p_uniforms.setValue( _gl, 'boneTextureSize', skeleton.boneTextureSize ); } else { p_uniforms.setOptional( _gl, skeleton, 'boneMatrices' ); } } } if ( refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow ) { materialProperties.receiveShadow = object.receiveShadow; p_uniforms.setValue( _gl, 'receiveShadow', object.receiveShadow ); } if ( refreshMaterial ) { p_uniforms.setValue( _gl, 'toneMappingExposure', _this.toneMappingExposure ); if ( materialProperties.needsLights ) { // the current material requires lighting info // note: all lighting uniforms are always set correctly // they simply reference the renderer's state for their // values // // use the current material's .needsUpdate flags to set // the GL state when required markUniformsLightsNeedsUpdate( m_uniforms, refreshLights ); } // refresh uniforms common to several materials if ( fog && material.fog ) { materials.refreshFogUniforms( m_uniforms, fog ); } materials.refreshMaterialUniforms( m_uniforms, material, _pixelRatio, _height, _transmissionRenderTarget ); WebGLUniforms.upload( _gl, materialProperties.uniformsList, m_uniforms, textures ); } if ( material.isShaderMaterial && material.uniformsNeedUpdate === true ) { WebGLUniforms.upload( _gl, materialProperties.uniformsList, m_uniforms, textures ); material.uniformsNeedUpdate = false; } if ( material.isSpriteMaterial ) { p_uniforms.setValue( _gl, 'center', object.center ); } // common matrices p_uniforms.setValue( _gl, 'modelViewMatrix', object.modelViewMatrix ); p_uniforms.setValue( _gl, 'normalMatrix', object.normalMatrix ); p_uniforms.setValue( _gl, 'modelMatrix', object.matrixWorld ); return program; } // If uniforms are marked as clean, they don't need to be loaded to the GPU. function markUniformsLightsNeedsUpdate( uniforms, value ) { uniforms.ambientLightColor.needsUpdate = value; uniforms.lightProbe.needsUpdate = value; uniforms.directionalLights.needsUpdate = value; uniforms.directionalLightShadows.needsUpdate = value; uniforms.pointLights.needsUpdate = value; uniforms.pointLightShadows.needsUpdate = value; uniforms.spotLights.needsUpdate = value; uniforms.spotLightShadows.needsUpdate = value; uniforms.rectAreaLights.needsUpdate = value; uniforms.hemisphereLights.needsUpdate = value; } function materialNeedsLights( material ) { return material.isMeshLambertMaterial || material.isMeshToonMaterial || material.isMeshPhongMaterial || material.isMeshStandardMaterial || material.isShadowMaterial || ( material.isShaderMaterial && material.lights === true ); } this.getActiveCubeFace = function () { return _currentActiveCubeFace; }; this.getActiveMipmapLevel = function () { return _currentActiveMipmapLevel; }; this.getRenderTarget = function () { return _currentRenderTarget; }; this.setRenderTarget = function ( renderTarget, activeCubeFace = 0, activeMipmapLevel = 0 ) { _currentRenderTarget = renderTarget; _currentActiveCubeFace = activeCubeFace; _currentActiveMipmapLevel = activeMipmapLevel; if ( renderTarget && properties.get( renderTarget ).__webglFramebuffer === undefined ) { textures.setupRenderTarget( renderTarget ); } let framebuffer = null; let isCube = false; let isRenderTarget3D = false; if ( renderTarget ) { const texture = renderTarget.texture; if ( texture.isDataTexture3D || texture.isDataTexture2DArray ) { isRenderTarget3D = true; } const __webglFramebuffer = properties.get( renderTarget ).__webglFramebuffer; if ( renderTarget.isWebGLCubeRenderTarget ) { framebuffer = __webglFramebuffer[ activeCubeFace ]; isCube = true; } else if ( renderTarget.isWebGLMultisampleRenderTarget ) { framebuffer = properties.get( renderTarget ).__webglMultisampledFramebuffer; } else { framebuffer = __webglFramebuffer; } _currentViewport.copy( renderTarget.viewport ); _currentScissor.copy( renderTarget.scissor ); _currentScissorTest = renderTarget.scissorTest; } else { _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor(); _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor(); _currentScissorTest = _scissorTest; } const framebufferBound = state.bindFramebuffer( 36160, framebuffer ); if ( framebufferBound && capabilities.drawBuffers ) { let needsUpdate = false; if ( renderTarget ) { if ( renderTarget.isWebGLMultipleRenderTargets ) { const textures = renderTarget.texture; if ( _currentDrawBuffers.length !== textures.length || _currentDrawBuffers[ 0 ] !== 36064 ) { for ( let i = 0, il = textures.length; i < il; i ++ ) { _currentDrawBuffers[ i ] = 36064 + i; } _currentDrawBuffers.length = textures.length; needsUpdate = true; } } else { if ( _currentDrawBuffers.length !== 1 || _currentDrawBuffers[ 0 ] !== 36064 ) { _currentDrawBuffers[ 0 ] = 36064; _currentDrawBuffers.length = 1; needsUpdate = true; } } } else { if ( _currentDrawBuffers.length !== 1 || _currentDrawBuffers[ 0 ] !== 1029 ) { _currentDrawBuffers[ 0 ] = 1029; _currentDrawBuffers.length = 1; needsUpdate = true; } } if ( needsUpdate ) { if ( capabilities.isWebGL2 ) { _gl.drawBuffers( _currentDrawBuffers ); } else { extensions.get( 'WEBGL_draw_buffers' ).drawBuffersWEBGL( _currentDrawBuffers ); } } } state.viewport( _currentViewport ); state.scissor( _currentScissor ); state.setScissorTest( _currentScissorTest ); if ( isCube ) { const textureProperties = properties.get( renderTarget.texture ); _gl.framebufferTexture2D( 36160, 36064, 34069 + activeCubeFace, textureProperties.__webglTexture, activeMipmapLevel ); } else if ( isRenderTarget3D ) { const textureProperties = properties.get( renderTarget.texture ); const layer = activeCubeFace || 0; _gl.framebufferTextureLayer( 36160, 36064, textureProperties.__webglTexture, activeMipmapLevel || 0, layer ); } _currentMaterialId = - 1; // reset current material to ensure correct uniform bindings }; this.readRenderTargetPixels = function ( renderTarget, x, y, width, height, buffer, activeCubeFaceIndex ) { if ( ! ( renderTarget && renderTarget.isWebGLRenderTarget ) ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' ); return; } let framebuffer = properties.get( renderTarget ).__webglFramebuffer; if ( renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined ) { framebuffer = framebuffer[ activeCubeFaceIndex ]; } if ( framebuffer ) { state.bindFramebuffer( 36160, framebuffer ); try { const texture = renderTarget.texture; const textureFormat = texture.format; const textureType = texture.type; if ( textureFormat !== RGBAFormat && utils.convert( textureFormat ) !== _gl.getParameter( 35739 ) ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.' ); return; } const halfFloatSupportedByExt = ( textureType === HalfFloatType ) && ( extensions.has( 'EXT_color_buffer_half_float' ) || ( capabilities.isWebGL2 && extensions.has( 'EXT_color_buffer_float' ) ) ); if ( textureType !== UnsignedByteType && utils.convert( textureType ) !== _gl.getParameter( 35738 ) && // Edge and Chrome Mac < 52 (#9513) ! ( textureType === FloatType && ( capabilities.isWebGL2 || extensions.has( 'OES_texture_float' ) || extensions.has( 'WEBGL_color_buffer_float' ) ) ) && // Chrome Mac >= 52 and Firefox ! halfFloatSupportedByExt ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.' ); return; } if ( _gl.checkFramebufferStatus( 36160 ) === 36053 ) { // the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604) if ( ( x >= 0 && x <= ( renderTarget.width - width ) ) && ( y >= 0 && y <= ( renderTarget.height - height ) ) ) { _gl.readPixels( x, y, width, height, utils.convert( textureFormat ), utils.convert( textureType ), buffer ); } } else { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.' ); } } finally { // restore framebuffer of current render target if necessary const framebuffer = ( _currentRenderTarget !== null ) ? properties.get( _currentRenderTarget ).__webglFramebuffer : null; state.bindFramebuffer( 36160, framebuffer ); } } }; this.copyFramebufferToTexture = function ( position, texture, level = 0 ) { const levelScale = Math.pow( 2, - level ); const width = Math.floor( texture.image.width * levelScale ); const height = Math.floor( texture.image.height * levelScale ); let glFormat = utils.convert( texture.format ); if ( capabilities.isWebGL2 ) { // Workaround for https://bugs.chromium.org/p/chromium/issues/detail?id=1120100 // Not needed in Chrome 93+ if ( glFormat === 6407 ) glFormat = 32849; if ( glFormat === 6408 ) glFormat = 32856; } textures.setTexture2D( texture, 0 ); _gl.copyTexImage2D( 3553, level, glFormat, position.x, position.y, width, height, 0 ); state.unbindTexture(); }; this.copyTextureToTexture = function ( position, srcTexture, dstTexture, level = 0 ) { const width = srcTexture.image.width; const height = srcTexture.image.height; const glFormat = utils.convert( dstTexture.format ); const glType = utils.convert( dstTexture.type ); textures.setTexture2D( dstTexture, 0 ); // As another texture upload may have changed pixelStorei // parameters, make sure they are correct for the dstTexture _gl.pixelStorei( 37440, dstTexture.flipY ); _gl.pixelStorei( 37441, dstTexture.premultiplyAlpha ); _gl.pixelStorei( 3317, dstTexture.unpackAlignment ); if ( srcTexture.isDataTexture ) { _gl.texSubImage2D( 3553, level, position.x, position.y, width, height, glFormat, glType, srcTexture.image.data ); } else { if ( srcTexture.isCompressedTexture ) { _gl.compressedTexSubImage2D( 3553, level, position.x, position.y, srcTexture.mipmaps[ 0 ].width, srcTexture.mipmaps[ 0 ].height, glFormat, srcTexture.mipmaps[ 0 ].data ); } else { _gl.texSubImage2D( 3553, level, position.x, position.y, glFormat, glType, srcTexture.image ); } } // Generate mipmaps only when copying level 0 if ( level === 0 && dstTexture.generateMipmaps ) _gl.generateMipmap( 3553 ); state.unbindTexture(); }; this.copyTextureToTexture3D = function ( sourceBox, position, srcTexture, dstTexture, level = 0 ) { if ( _this.isWebGL1Renderer ) { console.warn( 'THREE.WebGLRenderer.copyTextureToTexture3D: can only be used with WebGL2.' ); return; } const width = sourceBox.max.x - sourceBox.min.x + 1; const height = sourceBox.max.y - sourceBox.min.y + 1; const depth = sourceBox.max.z - sourceBox.min.z + 1; const glFormat = utils.convert( dstTexture.format ); const glType = utils.convert( dstTexture.type ); let glTarget; if ( dstTexture.isDataTexture3D ) { textures.setTexture3D( dstTexture, 0 ); glTarget = 32879; } else if ( dstTexture.isDataTexture2DArray ) { textures.setTexture2DArray( dstTexture, 0 ); glTarget = 35866; } else { console.warn( 'THREE.WebGLRenderer.copyTextureToTexture3D: only supports THREE.DataTexture3D and THREE.DataTexture2DArray.' ); return; } _gl.pixelStorei( 37440, dstTexture.flipY ); _gl.pixelStorei( 37441, dstTexture.premultiplyAlpha ); _gl.pixelStorei( 3317, dstTexture.unpackAlignment ); const unpackRowLen = _gl.getParameter( 3314 ); const unpackImageHeight = _gl.getParameter( 32878 ); const unpackSkipPixels = _gl.getParameter( 3316 ); const unpackSkipRows = _gl.getParameter( 3315 ); const unpackSkipImages = _gl.getParameter( 32877 ); const image = srcTexture.isCompressedTexture ? srcTexture.mipmaps[ 0 ] : srcTexture.image; _gl.pixelStorei( 3314, image.width ); _gl.pixelStorei( 32878, image.height ); _gl.pixelStorei( 3316, sourceBox.min.x ); _gl.pixelStorei( 3315, sourceBox.min.y ); _gl.pixelStorei( 32877, sourceBox.min.z ); if ( srcTexture.isDataTexture || srcTexture.isDataTexture3D ) { _gl.texSubImage3D( glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, glType, image.data ); } else { if ( srcTexture.isCompressedTexture ) { console.warn( 'THREE.WebGLRenderer.copyTextureToTexture3D: untested support for compressed srcTexture.' ); _gl.compressedTexSubImage3D( glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, image.data ); } else { _gl.texSubImage3D( glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, glType, image ); } } _gl.pixelStorei( 3314, unpackRowLen ); _gl.pixelStorei( 32878, unpackImageHeight ); _gl.pixelStorei( 3316, unpackSkipPixels ); _gl.pixelStorei( 3315, unpackSkipRows ); _gl.pixelStorei( 32877, unpackSkipImages ); // Generate mipmaps only when copying level 0 if ( level === 0 && dstTexture.generateMipmaps ) _gl.generateMipmap( glTarget ); state.unbindTexture(); }; this.initTexture = function ( texture ) { textures.setTexture2D( texture, 0 ); state.unbindTexture(); }; this.resetState = function () { _currentActiveCubeFace = 0; _currentActiveMipmapLevel = 0; _currentRenderTarget = null; state.reset(); bindingStates.reset(); }; if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) { __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) ); // eslint-disable-line no-undef } } class WebGL1Renderer extends WebGLRenderer {} WebGL1Renderer.prototype.isWebGL1Renderer = true; class FogExp2 { constructor( color, density = 0.00025 ) { this.name = ''; this.color = new Color( color ); this.density = density; } clone() { return new FogExp2( this.color, this.density ); } toJSON( /* meta */ ) { return { type: 'FogExp2', color: this.color.getHex(), density: this.density }; } } FogExp2.prototype.isFogExp2 = true; class Fog { constructor( color, near = 1, far = 1000 ) { this.name = ''; this.color = new Color( color ); this.near = near; this.far = far; } clone() { return new Fog( this.color, this.near, this.far ); } toJSON( /* meta */ ) { return { type: 'Fog', color: this.color.getHex(), near: this.near, far: this.far }; } } Fog.prototype.isFog = true; class Scene extends Object3D { constructor() { super(); this.type = 'Scene'; this.background = null; this.environment = null; this.fog = null; this.overrideMaterial = null; this.autoUpdate = true; // checked by the renderer if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) { __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) ); // eslint-disable-line no-undef } } copy( source, recursive ) { super.copy( source, recursive ); if ( source.background !== null ) this.background = source.background.clone(); if ( source.environment !== null ) this.environment = source.environment.clone(); if ( source.fog !== null ) this.fog = source.fog.clone(); if ( source.overrideMaterial !== null ) this.overrideMaterial = source.overrideMaterial.clone(); this.autoUpdate = source.autoUpdate; this.matrixAutoUpdate = source.matrixAutoUpdate; return this; } toJSON( meta ) { const data = super.toJSON( meta ); if ( this.fog !== null ) data.object.fog = this.fog.toJSON(); return data; } } Scene.prototype.isScene = true; class InterleavedBuffer { constructor( array, stride ) { this.array = array; this.stride = stride; this.count = array !== undefined ? array.length / stride : 0; this.usage = StaticDrawUsage; this.updateRange = { offset: 0, count: - 1 }; this.version = 0; this.uuid = generateUUID(); } onUploadCallback() {} set needsUpdate( value ) { if ( value === true ) this.version ++; } setUsage( value ) { this.usage = value; return this; } copy( source ) { this.array = new source.array.constructor( source.array ); this.count = source.count; this.stride = source.stride; this.usage = source.usage; return this; } copyAt( index1, attribute, index2 ) { index1 *= this.stride; index2 *= attribute.stride; for ( let i = 0, l = this.stride; i < l; i ++ ) { this.array[ index1 + i ] = attribute.array[ index2 + i ]; } return this; } set( value, offset = 0 ) { this.array.set( value, offset ); return this; } clone( data ) { if ( data.arrayBuffers === undefined ) { data.arrayBuffers = {}; } if ( this.array.buffer._uuid === undefined ) { this.array.buffer._uuid = generateUUID(); } if ( data.arrayBuffers[ this.array.buffer._uuid ] === undefined ) { data.arrayBuffers[ this.array.buffer._uuid ] = this.array.slice( 0 ).buffer; } const array = new this.array.constructor( data.arrayBuffers[ this.array.buffer._uuid ] ); const ib = new this.constructor( array, this.stride ); ib.setUsage( this.usage ); return ib; } onUpload( callback ) { this.onUploadCallback = callback; return this; } toJSON( data ) { if ( data.arrayBuffers === undefined ) { data.arrayBuffers = {}; } // generate UUID for array buffer if necessary if ( this.array.buffer._uuid === undefined ) { this.array.buffer._uuid = generateUUID(); } if ( data.arrayBuffers[ this.array.buffer._uuid ] === undefined ) { data.arrayBuffers[ this.array.buffer._uuid ] = Array.prototype.slice.call( new Uint32Array( this.array.buffer ) ); } // return { uuid: this.uuid, buffer: this.array.buffer._uuid, type: this.array.constructor.name, stride: this.stride }; } } InterleavedBuffer.prototype.isInterleavedBuffer = true; const _vector$6 = /*@__PURE__*/ new Vector3(); class InterleavedBufferAttribute { constructor( interleavedBuffer, itemSize, offset, normalized = false ) { this.name = ''; this.data = interleavedBuffer; this.itemSize = itemSize; this.offset = offset; this.normalized = normalized === true; } get count() { return this.data.count; } get array() { return this.data.array; } set needsUpdate( value ) { this.data.needsUpdate = value; } applyMatrix4( m ) { for ( let i = 0, l = this.data.count; i < l; i ++ ) { _vector$6.x = this.getX( i ); _vector$6.y = this.getY( i ); _vector$6.z = this.getZ( i ); _vector$6.applyMatrix4( m ); this.setXYZ( i, _vector$6.x, _vector$6.y, _vector$6.z ); } return this; } applyNormalMatrix( m ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector$6.x = this.getX( i ); _vector$6.y = this.getY( i ); _vector$6.z = this.getZ( i ); _vector$6.applyNormalMatrix( m ); this.setXYZ( i, _vector$6.x, _vector$6.y, _vector$6.z ); } return this; } transformDirection( m ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector$6.x = this.getX( i ); _vector$6.y = this.getY( i ); _vector$6.z = this.getZ( i ); _vector$6.transformDirection( m ); this.setXYZ( i, _vector$6.x, _vector$6.y, _vector$6.z ); } return this; } setX( index, x ) { this.data.array[ index * this.data.stride + this.offset ] = x; return this; } setY( index, y ) { this.data.array[ index * this.data.stride + this.offset + 1 ] = y; return this; } setZ( index, z ) { this.data.array[ index * this.data.stride + this.offset + 2 ] = z; return this; } setW( index, w ) { this.data.array[ index * this.data.stride + this.offset + 3 ] = w; return this; } getX( index ) { return this.data.array[ index * this.data.stride + this.offset ]; } getY( index ) { return this.data.array[ index * this.data.stride + this.offset + 1 ]; } getZ( index ) { return this.data.array[ index * this.data.stride + this.offset + 2 ]; } getW( index ) { return this.data.array[ index * this.data.stride + this.offset + 3 ]; } setXY( index, x, y ) { index = index * this.data.stride + this.offset; this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; return this; } setXYZ( index, x, y, z ) { index = index * this.data.stride + this.offset; this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; this.data.array[ index + 2 ] = z; return this; } setXYZW( index, x, y, z, w ) { index = index * this.data.stride + this.offset; this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; this.data.array[ index + 2 ] = z; this.data.array[ index + 3 ] = w; return this; } clone( data ) { if ( data === undefined ) { console.log( 'THREE.InterleavedBufferAttribute.clone(): Cloning an interlaved buffer attribute will deinterleave buffer data.' ); const array = []; for ( let i = 0; i < this.count; i ++ ) { const index = i * this.data.stride + this.offset; for ( let j = 0; j < this.itemSize; j ++ ) { array.push( this.data.array[ index + j ] ); } } return new BufferAttribute( new this.array.constructor( array ), this.itemSize, this.normalized ); } else { if ( data.interleavedBuffers === undefined ) { data.interleavedBuffers = {}; } if ( data.interleavedBuffers[ this.data.uuid ] === undefined ) { data.interleavedBuffers[ this.data.uuid ] = this.data.clone( data ); } return new InterleavedBufferAttribute( data.interleavedBuffers[ this.data.uuid ], this.itemSize, this.offset, this.normalized ); } } toJSON( data ) { if ( data === undefined ) { console.log( 'THREE.InterleavedBufferAttribute.toJSON(): Serializing an interlaved buffer attribute will deinterleave buffer data.' ); const array = []; for ( let i = 0; i < this.count; i ++ ) { const index = i * this.data.stride + this.offset; for ( let j = 0; j < this.itemSize; j ++ ) { array.push( this.data.array[ index + j ] ); } } // deinterleave data and save it as an ordinary buffer attribute for now return { itemSize: this.itemSize, type: this.array.constructor.name, array: array, normalized: this.normalized }; } else { // save as true interlaved attribtue if ( data.interleavedBuffers === undefined ) { data.interleavedBuffers = {}; } if ( data.interleavedBuffers[ this.data.uuid ] === undefined ) { data.interleavedBuffers[ this.data.uuid ] = this.data.toJSON( data ); } return { isInterleavedBufferAttribute: true, itemSize: this.itemSize, data: this.data.uuid, offset: this.offset, normalized: this.normalized }; } } } InterleavedBufferAttribute.prototype.isInterleavedBufferAttribute = true; /** * parameters = { * color: , * map: new THREE.Texture( ), * alphaMap: new THREE.Texture( ), * rotation: , * sizeAttenuation: * } */ class SpriteMaterial extends Material { constructor( parameters ) { super(); this.type = 'SpriteMaterial'; this.color = new Color( 0xffffff ); this.map = null; this.alphaMap = null; this.rotation = 0; this.sizeAttenuation = true; this.transparent = true; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.color.copy( source.color ); this.map = source.map; this.alphaMap = source.alphaMap; this.rotation = source.rotation; this.sizeAttenuation = source.sizeAttenuation; return this; } } SpriteMaterial.prototype.isSpriteMaterial = true; let _geometry; const _intersectPoint = /*@__PURE__*/ new Vector3(); const _worldScale = /*@__PURE__*/ new Vector3(); const _mvPosition = /*@__PURE__*/ new Vector3(); const _alignedPosition = /*@__PURE__*/ new Vector2(); const _rotatedPosition = /*@__PURE__*/ new Vector2(); const _viewWorldMatrix = /*@__PURE__*/ new Matrix4(); const _vA = /*@__PURE__*/ new Vector3(); const _vB = /*@__PURE__*/ new Vector3(); const _vC = /*@__PURE__*/ new Vector3(); const _uvA = /*@__PURE__*/ new Vector2(); const _uvB = /*@__PURE__*/ new Vector2(); const _uvC = /*@__PURE__*/ new Vector2(); class Sprite extends Object3D { constructor( material ) { super(); this.type = 'Sprite'; if ( _geometry === undefined ) { _geometry = new BufferGeometry(); const float32Array = new Float32Array( [ - 0.5, - 0.5, 0, 0, 0, 0.5, - 0.5, 0, 1, 0, 0.5, 0.5, 0, 1, 1, - 0.5, 0.5, 0, 0, 1 ] ); const interleavedBuffer = new InterleavedBuffer( float32Array, 5 ); _geometry.setIndex( [ 0, 1, 2, 0, 2, 3 ] ); _geometry.setAttribute( 'position', new InterleavedBufferAttribute( interleavedBuffer, 3, 0, false ) ); _geometry.setAttribute( 'uv', new InterleavedBufferAttribute( interleavedBuffer, 2, 3, false ) ); } this.geometry = _geometry; this.material = ( material !== undefined ) ? material : new SpriteMaterial(); this.center = new Vector2( 0.5, 0.5 ); } raycast( raycaster, intersects ) { if ( raycaster.camera === null ) { console.error( 'THREE.Sprite: "Raycaster.camera" needs to be set in order to raycast against sprites.' ); } _worldScale.setFromMatrixScale( this.matrixWorld ); _viewWorldMatrix.copy( raycaster.camera.matrixWorld ); this.modelViewMatrix.multiplyMatrices( raycaster.camera.matrixWorldInverse, this.matrixWorld ); _mvPosition.setFromMatrixPosition( this.modelViewMatrix ); if ( raycaster.camera.isPerspectiveCamera && this.material.sizeAttenuation === false ) { _worldScale.multiplyScalar( - _mvPosition.z ); } const rotation = this.material.rotation; let sin, cos; if ( rotation !== 0 ) { cos = Math.cos( rotation ); sin = Math.sin( rotation ); } const center = this.center; transformVertex( _vA.set( - 0.5, - 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos ); transformVertex( _vB.set( 0.5, - 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos ); transformVertex( _vC.set( 0.5, 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos ); _uvA.set( 0, 0 ); _uvB.set( 1, 0 ); _uvC.set( 1, 1 ); // check first triangle let intersect = raycaster.ray.intersectTriangle( _vA, _vB, _vC, false, _intersectPoint ); if ( intersect === null ) { // check second triangle transformVertex( _vB.set( - 0.5, 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos ); _uvB.set( 0, 1 ); intersect = raycaster.ray.intersectTriangle( _vA, _vC, _vB, false, _intersectPoint ); if ( intersect === null ) { return; } } const distance = raycaster.ray.origin.distanceTo( _intersectPoint ); if ( distance < raycaster.near || distance > raycaster.far ) return; intersects.push( { distance: distance, point: _intersectPoint.clone(), uv: Triangle.getUV( _intersectPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2() ), face: null, object: this } ); } copy( source ) { super.copy( source ); if ( source.center !== undefined ) this.center.copy( source.center ); this.material = source.material; return this; } } Sprite.prototype.isSprite = true; function transformVertex( vertexPosition, mvPosition, center, scale, sin, cos ) { // compute position in camera space _alignedPosition.subVectors( vertexPosition, center ).addScalar( 0.5 ).multiply( scale ); // to check if rotation is not zero if ( sin !== undefined ) { _rotatedPosition.x = ( cos * _alignedPosition.x ) - ( sin * _alignedPosition.y ); _rotatedPosition.y = ( sin * _alignedPosition.x ) + ( cos * _alignedPosition.y ); } else { _rotatedPosition.copy( _alignedPosition ); } vertexPosition.copy( mvPosition ); vertexPosition.x += _rotatedPosition.x; vertexPosition.y += _rotatedPosition.y; // transform to world space vertexPosition.applyMatrix4( _viewWorldMatrix ); } const _v1$2 = /*@__PURE__*/ new Vector3(); const _v2$1 = /*@__PURE__*/ new Vector3(); class LOD extends Object3D { constructor() { super(); this._currentLevel = 0; this.type = 'LOD'; Object.defineProperties( this, { levels: { enumerable: true, value: [] }, isLOD: { value: true, } } ); this.autoUpdate = true; } copy( source ) { super.copy( source, false ); const levels = source.levels; for ( let i = 0, l = levels.length; i < l; i ++ ) { const level = levels[ i ]; this.addLevel( level.object.clone(), level.distance ); } this.autoUpdate = source.autoUpdate; return this; } addLevel( object, distance = 0 ) { distance = Math.abs( distance ); const levels = this.levels; let l; for ( l = 0; l < levels.length; l ++ ) { if ( distance < levels[ l ].distance ) { break; } } levels.splice( l, 0, { distance: distance, object: object } ); this.add( object ); return this; } getCurrentLevel() { return this._currentLevel; } getObjectForDistance( distance ) { const levels = this.levels; if ( levels.length > 0 ) { let i, l; for ( i = 1, l = levels.length; i < l; i ++ ) { if ( distance < levels[ i ].distance ) { break; } } return levels[ i - 1 ].object; } return null; } raycast( raycaster, intersects ) { const levels = this.levels; if ( levels.length > 0 ) { _v1$2.setFromMatrixPosition( this.matrixWorld ); const distance = raycaster.ray.origin.distanceTo( _v1$2 ); this.getObjectForDistance( distance ).raycast( raycaster, intersects ); } } update( camera ) { const levels = this.levels; if ( levels.length > 1 ) { _v1$2.setFromMatrixPosition( camera.matrixWorld ); _v2$1.setFromMatrixPosition( this.matrixWorld ); const distance = _v1$2.distanceTo( _v2$1 ) / camera.zoom; levels[ 0 ].object.visible = true; let i, l; for ( i = 1, l = levels.length; i < l; i ++ ) { if ( distance >= levels[ i ].distance ) { levels[ i - 1 ].object.visible = false; levels[ i ].object.visible = true; } else { break; } } this._currentLevel = i - 1; for ( ; i < l; i ++ ) { levels[ i ].object.visible = false; } } } toJSON( meta ) { const data = super.toJSON( meta ); if ( this.autoUpdate === false ) data.object.autoUpdate = false; data.object.levels = []; const levels = this.levels; for ( let i = 0, l = levels.length; i < l; i ++ ) { const level = levels[ i ]; data.object.levels.push( { object: level.object.uuid, distance: level.distance } ); } return data; } } const _basePosition = /*@__PURE__*/ new Vector3(); const _skinIndex = /*@__PURE__*/ new Vector4(); const _skinWeight = /*@__PURE__*/ new Vector4(); const _vector$5 = /*@__PURE__*/ new Vector3(); const _matrix = /*@__PURE__*/ new Matrix4(); class SkinnedMesh extends Mesh { constructor( geometry, material ) { super( geometry, material ); this.type = 'SkinnedMesh'; this.bindMode = 'attached'; this.bindMatrix = new Matrix4(); this.bindMatrixInverse = new Matrix4(); } copy( source ) { super.copy( source ); this.bindMode = source.bindMode; this.bindMatrix.copy( source.bindMatrix ); this.bindMatrixInverse.copy( source.bindMatrixInverse ); this.skeleton = source.skeleton; return this; } bind( skeleton, bindMatrix ) { this.skeleton = skeleton; if ( bindMatrix === undefined ) { this.updateMatrixWorld( true ); this.skeleton.calculateInverses(); bindMatrix = this.matrixWorld; } this.bindMatrix.copy( bindMatrix ); this.bindMatrixInverse.copy( bindMatrix ).invert(); } pose() { this.skeleton.pose(); } normalizeSkinWeights() { const vector = new Vector4(); const skinWeight = this.geometry.attributes.skinWeight; for ( let i = 0, l = skinWeight.count; i < l; i ++ ) { vector.x = skinWeight.getX( i ); vector.y = skinWeight.getY( i ); vector.z = skinWeight.getZ( i ); vector.w = skinWeight.getW( i ); const scale = 1.0 / vector.manhattanLength(); if ( scale !== Infinity ) { vector.multiplyScalar( scale ); } else { vector.set( 1, 0, 0, 0 ); // do something reasonable } skinWeight.setXYZW( i, vector.x, vector.y, vector.z, vector.w ); } } updateMatrixWorld( force ) { super.updateMatrixWorld( force ); if ( this.bindMode === 'attached' ) { this.bindMatrixInverse.copy( this.matrixWorld ).invert(); } else if ( this.bindMode === 'detached' ) { this.bindMatrixInverse.copy( this.bindMatrix ).invert(); } else { console.warn( 'THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode ); } } boneTransform( index, target ) { const skeleton = this.skeleton; const geometry = this.geometry; _skinIndex.fromBufferAttribute( geometry.attributes.skinIndex, index ); _skinWeight.fromBufferAttribute( geometry.attributes.skinWeight, index ); _basePosition.fromBufferAttribute( geometry.attributes.position, index ).applyMatrix4( this.bindMatrix ); target.set( 0, 0, 0 ); for ( let i = 0; i < 4; i ++ ) { const weight = _skinWeight.getComponent( i ); if ( weight !== 0 ) { const boneIndex = _skinIndex.getComponent( i ); _matrix.multiplyMatrices( skeleton.bones[ boneIndex ].matrixWorld, skeleton.boneInverses[ boneIndex ] ); target.addScaledVector( _vector$5.copy( _basePosition ).applyMatrix4( _matrix ), weight ); } } return target.applyMatrix4( this.bindMatrixInverse ); } } SkinnedMesh.prototype.isSkinnedMesh = true; class Bone extends Object3D { constructor() { super(); this.type = 'Bone'; } } Bone.prototype.isBone = true; class DataTexture extends Texture { constructor( data = null, width = 1, height = 1, format, type, mapping, wrapS, wrapT, magFilter = NearestFilter, minFilter = NearestFilter, anisotropy, encoding ) { super( null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ); this.image = { data: data, width: width, height: height }; this.magFilter = magFilter; this.minFilter = minFilter; this.generateMipmaps = false; this.flipY = false; this.unpackAlignment = 1; this.needsUpdate = true; } } DataTexture.prototype.isDataTexture = true; const _offsetMatrix = /*@__PURE__*/ new Matrix4(); const _identityMatrix = /*@__PURE__*/ new Matrix4(); class Skeleton { constructor( bones = [], boneInverses = [] ) { this.uuid = generateUUID(); this.bones = bones.slice( 0 ); this.boneInverses = boneInverses; this.boneMatrices = null; this.boneTexture = null; this.boneTextureSize = 0; this.frame = - 1; this.init(); } init() { const bones = this.bones; const boneInverses = this.boneInverses; this.boneMatrices = new Float32Array( bones.length * 16 ); // calculate inverse bone matrices if necessary if ( boneInverses.length === 0 ) { this.calculateInverses(); } else { // handle special case if ( bones.length !== boneInverses.length ) { console.warn( 'THREE.Skeleton: Number of inverse bone matrices does not match amount of bones.' ); this.boneInverses = []; for ( let i = 0, il = this.bones.length; i < il; i ++ ) { this.boneInverses.push( new Matrix4() ); } } } } calculateInverses() { this.boneInverses.length = 0; for ( let i = 0, il = this.bones.length; i < il; i ++ ) { const inverse = new Matrix4(); if ( this.bones[ i ] ) { inverse.copy( this.bones[ i ].matrixWorld ).invert(); } this.boneInverses.push( inverse ); } } pose() { // recover the bind-time world matrices for ( let i = 0, il = this.bones.length; i < il; i ++ ) { const bone = this.bones[ i ]; if ( bone ) { bone.matrixWorld.copy( this.boneInverses[ i ] ).invert(); } } // compute the local matrices, positions, rotations and scales for ( let i = 0, il = this.bones.length; i < il; i ++ ) { const bone = this.bones[ i ]; if ( bone ) { if ( bone.parent && bone.parent.isBone ) { bone.matrix.copy( bone.parent.matrixWorld ).invert(); bone.matrix.multiply( bone.matrixWorld ); } else { bone.matrix.copy( bone.matrixWorld ); } bone.matrix.decompose( bone.position, bone.quaternion, bone.scale ); } } } update() { const bones = this.bones; const boneInverses = this.boneInverses; const boneMatrices = this.boneMatrices; const boneTexture = this.boneTexture; // flatten bone matrices to array for ( let i = 0, il = bones.length; i < il; i ++ ) { // compute the offset between the current and the original transform const matrix = bones[ i ] ? bones[ i ].matrixWorld : _identityMatrix; _offsetMatrix.multiplyMatrices( matrix, boneInverses[ i ] ); _offsetMatrix.toArray( boneMatrices, i * 16 ); } if ( boneTexture !== null ) { boneTexture.needsUpdate = true; } } clone() { return new Skeleton( this.bones, this.boneInverses ); } computeBoneTexture() { // layout (1 matrix = 4 pixels) // RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4) // with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8) // 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16) // 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32) // 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64) let size = Math.sqrt( this.bones.length * 4 ); // 4 pixels needed for 1 matrix size = ceilPowerOfTwo( size ); size = Math.max( size, 4 ); const boneMatrices = new Float32Array( size * size * 4 ); // 4 floats per RGBA pixel boneMatrices.set( this.boneMatrices ); // copy current values const boneTexture = new DataTexture( boneMatrices, size, size, RGBAFormat, FloatType ); this.boneMatrices = boneMatrices; this.boneTexture = boneTexture; this.boneTextureSize = size; return this; } getBoneByName( name ) { for ( let i = 0, il = this.bones.length; i < il; i ++ ) { const bone = this.bones[ i ]; if ( bone.name === name ) { return bone; } } return undefined; } dispose( ) { if ( this.boneTexture !== null ) { this.boneTexture.dispose(); this.boneTexture = null; } } fromJSON( json, bones ) { this.uuid = json.uuid; for ( let i = 0, l = json.bones.length; i < l; i ++ ) { const uuid = json.bones[ i ]; let bone = bones[ uuid ]; if ( bone === undefined ) { console.warn( 'THREE.Skeleton: No bone found with UUID:', uuid ); bone = new Bone(); } this.bones.push( bone ); this.boneInverses.push( new Matrix4().fromArray( json.boneInverses[ i ] ) ); } this.init(); return this; } toJSON() { const data = { metadata: { version: 4.5, type: 'Skeleton', generator: 'Skeleton.toJSON' }, bones: [], boneInverses: [] }; data.uuid = this.uuid; const bones = this.bones; const boneInverses = this.boneInverses; for ( let i = 0, l = bones.length; i < l; i ++ ) { const bone = bones[ i ]; data.bones.push( bone.uuid ); const boneInverse = boneInverses[ i ]; data.boneInverses.push( boneInverse.toArray() ); } return data; } } class InstancedBufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized, meshPerAttribute = 1 ) { if ( typeof normalized === 'number' ) { meshPerAttribute = normalized; normalized = false; console.error( 'THREE.InstancedBufferAttribute: The constructor now expects normalized as the third argument.' ); } super( array, itemSize, normalized ); this.meshPerAttribute = meshPerAttribute; } copy( source ) { super.copy( source ); this.meshPerAttribute = source.meshPerAttribute; return this; } toJSON() { const data = super.toJSON(); data.meshPerAttribute = this.meshPerAttribute; data.isInstancedBufferAttribute = true; return data; } } InstancedBufferAttribute.prototype.isInstancedBufferAttribute = true; const _instanceLocalMatrix = /*@__PURE__*/ new Matrix4(); const _instanceWorldMatrix = /*@__PURE__*/ new Matrix4(); const _instanceIntersects = []; const _mesh = /*@__PURE__*/ new Mesh(); class InstancedMesh extends Mesh { constructor( geometry, material, count ) { super( geometry, material ); this.instanceMatrix = new InstancedBufferAttribute( new Float32Array( count * 16 ), 16 ); this.instanceColor = null; this.count = count; this.frustumCulled = false; } copy( source ) { super.copy( source ); this.instanceMatrix.copy( source.instanceMatrix ); if ( source.instanceColor !== null ) this.instanceColor = source.instanceColor.clone(); this.count = source.count; return this; } getColorAt( index, color ) { color.fromArray( this.instanceColor.array, index * 3 ); } getMatrixAt( index, matrix ) { matrix.fromArray( this.instanceMatrix.array, index * 16 ); } raycast( raycaster, intersects ) { const matrixWorld = this.matrixWorld; const raycastTimes = this.count; _mesh.geometry = this.geometry; _mesh.material = this.material; if ( _mesh.material === undefined ) return; for ( let instanceId = 0; instanceId < raycastTimes; instanceId ++ ) { // calculate the world matrix for each instance this.getMatrixAt( instanceId, _instanceLocalMatrix ); _instanceWorldMatrix.multiplyMatrices( matrixWorld, _instanceLocalMatrix ); // the mesh represents this single instance _mesh.matrixWorld = _instanceWorldMatrix; _mesh.raycast( raycaster, _instanceIntersects ); // process the result of raycast for ( let i = 0, l = _instanceIntersects.length; i < l; i ++ ) { const intersect = _instanceIntersects[ i ]; intersect.instanceId = instanceId; intersect.object = this; intersects.push( intersect ); } _instanceIntersects.length = 0; } } setColorAt( index, color ) { if ( this.instanceColor === null ) { this.instanceColor = new InstancedBufferAttribute( new Float32Array( this.instanceMatrix.count * 3 ), 3 ); } color.toArray( this.instanceColor.array, index * 3 ); } setMatrixAt( index, matrix ) { matrix.toArray( this.instanceMatrix.array, index * 16 ); } updateMorphTargets() { } dispose() { this.dispatchEvent( { type: 'dispose' } ); } } InstancedMesh.prototype.isInstancedMesh = true; /** * parameters = { * color: , * opacity: , * * linewidth: , * linecap: "round", * linejoin: "round" * } */ class LineBasicMaterial extends Material { constructor( parameters ) { super(); this.type = 'LineBasicMaterial'; this.color = new Color( 0xffffff ); this.linewidth = 1; this.linecap = 'round'; this.linejoin = 'round'; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.color.copy( source.color ); this.linewidth = source.linewidth; this.linecap = source.linecap; this.linejoin = source.linejoin; return this; } } LineBasicMaterial.prototype.isLineBasicMaterial = true; const _start$1 = /*@__PURE__*/ new Vector3(); const _end$1 = /*@__PURE__*/ new Vector3(); const _inverseMatrix$1 = /*@__PURE__*/ new Matrix4(); const _ray$1 = /*@__PURE__*/ new Ray(); const _sphere$1 = /*@__PURE__*/ new Sphere(); class Line extends Object3D { constructor( geometry = new BufferGeometry(), material = new LineBasicMaterial() ) { super(); this.type = 'Line'; this.geometry = geometry; this.material = material; this.updateMorphTargets(); } copy( source ) { super.copy( source ); this.material = source.material; this.geometry = source.geometry; return this; } computeLineDistances() { const geometry = this.geometry; if ( geometry.isBufferGeometry ) { // we assume non-indexed geometry if ( geometry.index === null ) { const positionAttribute = geometry.attributes.position; const lineDistances = [ 0 ]; for ( let i = 1, l = positionAttribute.count; i < l; i ++ ) { _start$1.fromBufferAttribute( positionAttribute, i - 1 ); _end$1.fromBufferAttribute( positionAttribute, i ); lineDistances[ i ] = lineDistances[ i - 1 ]; lineDistances[ i ] += _start$1.distanceTo( _end$1 ); } geometry.setAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) ); } else { console.warn( 'THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' ); } } else if ( geometry.isGeometry ) { console.error( 'THREE.Line.computeLineDistances() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.' ); } return this; } raycast( raycaster, intersects ) { const geometry = this.geometry; const matrixWorld = this.matrixWorld; const threshold = raycaster.params.Line.threshold; const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); _sphere$1.copy( geometry.boundingSphere ); _sphere$1.applyMatrix4( matrixWorld ); _sphere$1.radius += threshold; if ( raycaster.ray.intersectsSphere( _sphere$1 ) === false ) return; // _inverseMatrix$1.copy( matrixWorld ).invert(); _ray$1.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$1 ); const localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 ); const localThresholdSq = localThreshold * localThreshold; const vStart = new Vector3(); const vEnd = new Vector3(); const interSegment = new Vector3(); const interRay = new Vector3(); const step = this.isLineSegments ? 2 : 1; if ( geometry.isBufferGeometry ) { const index = geometry.index; const attributes = geometry.attributes; const positionAttribute = attributes.position; if ( index !== null ) { const start = Math.max( 0, drawRange.start ); const end = Math.min( index.count, ( drawRange.start + drawRange.count ) ); for ( let i = start, l = end - 1; i < l; i += step ) { const a = index.getX( i ); const b = index.getX( i + 1 ); vStart.fromBufferAttribute( positionAttribute, a ); vEnd.fromBufferAttribute( positionAttribute, b ); const distSq = _ray$1.distanceSqToSegment( vStart, vEnd, interRay, interSegment ); if ( distSq > localThresholdSq ) continue; interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation const distance = raycaster.ray.origin.distanceTo( interRay ); if ( distance < raycaster.near || distance > raycaster.far ) continue; intersects.push( { distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), index: i, face: null, faceIndex: null, object: this } ); } } else { const start = Math.max( 0, drawRange.start ); const end = Math.min( positionAttribute.count, ( drawRange.start + drawRange.count ) ); for ( let i = start, l = end - 1; i < l; i += step ) { vStart.fromBufferAttribute( positionAttribute, i ); vEnd.fromBufferAttribute( positionAttribute, i + 1 ); const distSq = _ray$1.distanceSqToSegment( vStart, vEnd, interRay, interSegment ); if ( distSq > localThresholdSq ) continue; interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation const distance = raycaster.ray.origin.distanceTo( interRay ); if ( distance < raycaster.near || distance > raycaster.far ) continue; intersects.push( { distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), index: i, face: null, faceIndex: null, object: this } ); } } } else if ( geometry.isGeometry ) { console.error( 'THREE.Line.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.' ); } } updateMorphTargets() { const geometry = this.geometry; if ( geometry.isBufferGeometry ) { const morphAttributes = geometry.morphAttributes; const keys = Object.keys( morphAttributes ); if ( keys.length > 0 ) { const morphAttribute = morphAttributes[ keys[ 0 ] ]; if ( morphAttribute !== undefined ) { this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) { const name = morphAttribute[ m ].name || String( m ); this.morphTargetInfluences.push( 0 ); this.morphTargetDictionary[ name ] = m; } } } } else { const morphTargets = geometry.morphTargets; if ( morphTargets !== undefined && morphTargets.length > 0 ) { console.error( 'THREE.Line.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.' ); } } } } Line.prototype.isLine = true; const _start = /*@__PURE__*/ new Vector3(); const _end = /*@__PURE__*/ new Vector3(); class LineSegments extends Line { constructor( geometry, material ) { super( geometry, material ); this.type = 'LineSegments'; } computeLineDistances() { const geometry = this.geometry; if ( geometry.isBufferGeometry ) { // we assume non-indexed geometry if ( geometry.index === null ) { const positionAttribute = geometry.attributes.position; const lineDistances = []; for ( let i = 0, l = positionAttribute.count; i < l; i += 2 ) { _start.fromBufferAttribute( positionAttribute, i ); _end.fromBufferAttribute( positionAttribute, i + 1 ); lineDistances[ i ] = ( i === 0 ) ? 0 : lineDistances[ i - 1 ]; lineDistances[ i + 1 ] = lineDistances[ i ] + _start.distanceTo( _end ); } geometry.setAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) ); } else { console.warn( 'THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' ); } } else if ( geometry.isGeometry ) { console.error( 'THREE.LineSegments.computeLineDistances() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.' ); } return this; } } LineSegments.prototype.isLineSegments = true; class LineLoop extends Line { constructor( geometry, material ) { super( geometry, material ); this.type = 'LineLoop'; } } LineLoop.prototype.isLineLoop = true; /** * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * alphaMap: new THREE.Texture( ), * * size: , * sizeAttenuation: * * } */ class PointsMaterial extends Material { constructor( parameters ) { super(); this.type = 'PointsMaterial'; this.color = new Color( 0xffffff ); this.map = null; this.alphaMap = null; this.size = 1; this.sizeAttenuation = true; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.color.copy( source.color ); this.map = source.map; this.alphaMap = source.alphaMap; this.size = source.size; this.sizeAttenuation = source.sizeAttenuation; return this; } } PointsMaterial.prototype.isPointsMaterial = true; const _inverseMatrix = /*@__PURE__*/ new Matrix4(); const _ray = /*@__PURE__*/ new Ray(); const _sphere = /*@__PURE__*/ new Sphere(); const _position$2 = /*@__PURE__*/ new Vector3(); class Points extends Object3D { constructor( geometry = new BufferGeometry(), material = new PointsMaterial() ) { super(); this.type = 'Points'; this.geometry = geometry; this.material = material; this.updateMorphTargets(); } copy( source ) { super.copy( source ); this.material = source.material; this.geometry = source.geometry; return this; } raycast( raycaster, intersects ) { const geometry = this.geometry; const matrixWorld = this.matrixWorld; const threshold = raycaster.params.Points.threshold; const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); _sphere.copy( geometry.boundingSphere ); _sphere.applyMatrix4( matrixWorld ); _sphere.radius += threshold; if ( raycaster.ray.intersectsSphere( _sphere ) === false ) return; // _inverseMatrix.copy( matrixWorld ).invert(); _ray.copy( raycaster.ray ).applyMatrix4( _inverseMatrix ); const localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 ); const localThresholdSq = localThreshold * localThreshold; if ( geometry.isBufferGeometry ) { const index = geometry.index; const attributes = geometry.attributes; const positionAttribute = attributes.position; if ( index !== null ) { const start = Math.max( 0, drawRange.start ); const end = Math.min( index.count, ( drawRange.start + drawRange.count ) ); for ( let i = start, il = end; i < il; i ++ ) { const a = index.getX( i ); _position$2.fromBufferAttribute( positionAttribute, a ); testPoint( _position$2, a, localThresholdSq, matrixWorld, raycaster, intersects, this ); } } else { const start = Math.max( 0, drawRange.start ); const end = Math.min( positionAttribute.count, ( drawRange.start + drawRange.count ) ); for ( let i = start, l = end; i < l; i ++ ) { _position$2.fromBufferAttribute( positionAttribute, i ); testPoint( _position$2, i, localThresholdSq, matrixWorld, raycaster, intersects, this ); } } } else { console.error( 'THREE.Points.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.' ); } } updateMorphTargets() { const geometry = this.geometry; if ( geometry.isBufferGeometry ) { const morphAttributes = geometry.morphAttributes; const keys = Object.keys( morphAttributes ); if ( keys.length > 0 ) { const morphAttribute = morphAttributes[ keys[ 0 ] ]; if ( morphAttribute !== undefined ) { this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) { const name = morphAttribute[ m ].name || String( m ); this.morphTargetInfluences.push( 0 ); this.morphTargetDictionary[ name ] = m; } } } } else { const morphTargets = geometry.morphTargets; if ( morphTargets !== undefined && morphTargets.length > 0 ) { console.error( 'THREE.Points.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.' ); } } } } Points.prototype.isPoints = true; function testPoint( point, index, localThresholdSq, matrixWorld, raycaster, intersects, object ) { const rayPointDistanceSq = _ray.distanceSqToPoint( point ); if ( rayPointDistanceSq < localThresholdSq ) { const intersectPoint = new Vector3(); _ray.closestPointToPoint( point, intersectPoint ); intersectPoint.applyMatrix4( matrixWorld ); const distance = raycaster.ray.origin.distanceTo( intersectPoint ); if ( distance < raycaster.near || distance > raycaster.far ) return; intersects.push( { distance: distance, distanceToRay: Math.sqrt( rayPointDistanceSq ), point: intersectPoint, index: index, face: null, object: object } ); } } class VideoTexture extends Texture { constructor( video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { super( video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.format = format !== undefined ? format : RGBFormat; this.minFilter = minFilter !== undefined ? minFilter : LinearFilter; this.magFilter = magFilter !== undefined ? magFilter : LinearFilter; this.generateMipmaps = false; const scope = this; function updateVideo() { scope.needsUpdate = true; video.requestVideoFrameCallback( updateVideo ); } if ( 'requestVideoFrameCallback' in video ) { video.requestVideoFrameCallback( updateVideo ); } } clone() { return new this.constructor( this.image ).copy( this ); } update() { const video = this.image; const hasVideoFrameCallback = 'requestVideoFrameCallback' in video; if ( hasVideoFrameCallback === false && video.readyState >= video.HAVE_CURRENT_DATA ) { this.needsUpdate = true; } } } VideoTexture.prototype.isVideoTexture = true; class CompressedTexture extends Texture { constructor( mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) { super( null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ); this.image = { width: width, height: height }; this.mipmaps = mipmaps; // no flipping for cube textures // (also flipping doesn't work for compressed textures ) this.flipY = false; // can't generate mipmaps for compressed textures // mips must be embedded in DDS files this.generateMipmaps = false; } } CompressedTexture.prototype.isCompressedTexture = true; class CanvasTexture extends Texture { constructor( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { super( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.needsUpdate = true; } } CanvasTexture.prototype.isCanvasTexture = true; class DepthTexture extends Texture { constructor( width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format ) { format = format !== undefined ? format : DepthFormat; if ( format !== DepthFormat && format !== DepthStencilFormat ) { throw new Error( 'DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat' ); } if ( type === undefined && format === DepthFormat ) type = UnsignedShortType; if ( type === undefined && format === DepthStencilFormat ) type = UnsignedInt248Type; super( null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.image = { width: width, height: height }; this.magFilter = magFilter !== undefined ? magFilter : NearestFilter; this.minFilter = minFilter !== undefined ? minFilter : NearestFilter; this.flipY = false; this.generateMipmaps = false; } } DepthTexture.prototype.isDepthTexture = true; class CircleGeometry extends BufferGeometry { constructor( radius = 1, segments = 8, thetaStart = 0, thetaLength = Math.PI * 2 ) { super(); this.type = 'CircleGeometry'; this.parameters = { radius: radius, segments: segments, thetaStart: thetaStart, thetaLength: thetaLength }; segments = Math.max( 3, segments ); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // helper variables const vertex = new Vector3(); const uv = new Vector2(); // center point vertices.push( 0, 0, 0 ); normals.push( 0, 0, 1 ); uvs.push( 0.5, 0.5 ); for ( let s = 0, i = 3; s <= segments; s ++, i += 3 ) { const segment = thetaStart + s / segments * thetaLength; // vertex vertex.x = radius * Math.cos( segment ); vertex.y = radius * Math.sin( segment ); vertices.push( vertex.x, vertex.y, vertex.z ); // normal normals.push( 0, 0, 1 ); // uvs uv.x = ( vertices[ i ] / radius + 1 ) / 2; uv.y = ( vertices[ i + 1 ] / radius + 1 ) / 2; uvs.push( uv.x, uv.y ); } // indices for ( let i = 1; i <= segments; i ++ ) { indices.push( i, i + 1, 0 ); } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } static fromJSON( data ) { return new CircleGeometry( data.radius, data.segments, data.thetaStart, data.thetaLength ); } } class CylinderGeometry extends BufferGeometry { constructor( radiusTop = 1, radiusBottom = 1, height = 1, radialSegments = 8, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2 ) { super(); this.type = 'CylinderGeometry'; this.parameters = { radiusTop: radiusTop, radiusBottom: radiusBottom, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength }; const scope = this; radialSegments = Math.floor( radialSegments ); heightSegments = Math.floor( heightSegments ); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // helper variables let index = 0; const indexArray = []; const halfHeight = height / 2; let groupStart = 0; // generate geometry generateTorso(); if ( openEnded === false ) { if ( radiusTop > 0 ) generateCap( true ); if ( radiusBottom > 0 ) generateCap( false ); } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); function generateTorso() { const normal = new Vector3(); const vertex = new Vector3(); let groupCount = 0; // this will be used to calculate the normal const slope = ( radiusBottom - radiusTop ) / height; // generate vertices, normals and uvs for ( let y = 0; y <= heightSegments; y ++ ) { const indexRow = []; const v = y / heightSegments; // calculate the radius of the current row const radius = v * ( radiusBottom - radiusTop ) + radiusTop; for ( let x = 0; x <= radialSegments; x ++ ) { const u = x / radialSegments; const theta = u * thetaLength + thetaStart; const sinTheta = Math.sin( theta ); const cosTheta = Math.cos( theta ); // vertex vertex.x = radius * sinTheta; vertex.y = - v * height + halfHeight; vertex.z = radius * cosTheta; vertices.push( vertex.x, vertex.y, vertex.z ); // normal normal.set( sinTheta, slope, cosTheta ).normalize(); normals.push( normal.x, normal.y, normal.z ); // uv uvs.push( u, 1 - v ); // save index of vertex in respective row indexRow.push( index ++ ); } // now save vertices of the row in our index array indexArray.push( indexRow ); } // generate indices for ( let x = 0; x < radialSegments; x ++ ) { for ( let y = 0; y < heightSegments; y ++ ) { // we use the index array to access the correct indices const a = indexArray[ y ][ x ]; const b = indexArray[ y + 1 ][ x ]; const c = indexArray[ y + 1 ][ x + 1 ]; const d = indexArray[ y ][ x + 1 ]; // faces indices.push( a, b, d ); indices.push( b, c, d ); // update group counter groupCount += 6; } } // add a group to the geometry. this will ensure multi material support scope.addGroup( groupStart, groupCount, 0 ); // calculate new start value for groups groupStart += groupCount; } function generateCap( top ) { // save the index of the first center vertex const centerIndexStart = index; const uv = new Vector2(); const vertex = new Vector3(); let groupCount = 0; const radius = ( top === true ) ? radiusTop : radiusBottom; const sign = ( top === true ) ? 1 : - 1; // first we generate the center vertex data of the cap. // because the geometry needs one set of uvs per face, // we must generate a center vertex per face/segment for ( let x = 1; x <= radialSegments; x ++ ) { // vertex vertices.push( 0, halfHeight * sign, 0 ); // normal normals.push( 0, sign, 0 ); // uv uvs.push( 0.5, 0.5 ); // increase index index ++; } // save the index of the last center vertex const centerIndexEnd = index; // now we generate the surrounding vertices, normals and uvs for ( let x = 0; x <= radialSegments; x ++ ) { const u = x / radialSegments; const theta = u * thetaLength + thetaStart; const cosTheta = Math.cos( theta ); const sinTheta = Math.sin( theta ); // vertex vertex.x = radius * sinTheta; vertex.y = halfHeight * sign; vertex.z = radius * cosTheta; vertices.push( vertex.x, vertex.y, vertex.z ); // normal normals.push( 0, sign, 0 ); // uv uv.x = ( cosTheta * 0.5 ) + 0.5; uv.y = ( sinTheta * 0.5 * sign ) + 0.5; uvs.push( uv.x, uv.y ); // increase index index ++; } // generate indices for ( let x = 0; x < radialSegments; x ++ ) { const c = centerIndexStart + x; const i = centerIndexEnd + x; if ( top === true ) { // face top indices.push( i, i + 1, c ); } else { // face bottom indices.push( i + 1, i, c ); } groupCount += 3; } // add a group to the geometry. this will ensure multi material support scope.addGroup( groupStart, groupCount, top === true ? 1 : 2 ); // calculate new start value for groups groupStart += groupCount; } } static fromJSON( data ) { return new CylinderGeometry( data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength ); } } class ConeGeometry extends CylinderGeometry { constructor( radius = 1, height = 1, radialSegments = 8, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2 ) { super( 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ); this.type = 'ConeGeometry'; this.parameters = { radius: radius, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength }; } static fromJSON( data ) { return new ConeGeometry( data.radius, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength ); } } class PolyhedronGeometry extends BufferGeometry { constructor( vertices, indices, radius = 1, detail = 0 ) { super(); this.type = 'PolyhedronGeometry'; this.parameters = { vertices: vertices, indices: indices, radius: radius, detail: detail }; // default buffer data const vertexBuffer = []; const uvBuffer = []; // the subdivision creates the vertex buffer data subdivide( detail ); // all vertices should lie on a conceptual sphere with a given radius applyRadius( radius ); // finally, create the uv data generateUVs(); // build non-indexed geometry this.setAttribute( 'position', new Float32BufferAttribute( vertexBuffer, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( vertexBuffer.slice(), 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvBuffer, 2 ) ); if ( detail === 0 ) { this.computeVertexNormals(); // flat normals } else { this.normalizeNormals(); // smooth normals } // helper functions function subdivide( detail ) { const a = new Vector3(); const b = new Vector3(); const c = new Vector3(); // iterate over all faces and apply a subdivison with the given detail value for ( let i = 0; i < indices.length; i += 3 ) { // get the vertices of the face getVertexByIndex( indices[ i + 0 ], a ); getVertexByIndex( indices[ i + 1 ], b ); getVertexByIndex( indices[ i + 2 ], c ); // perform subdivision subdivideFace( a, b, c, detail ); } } function subdivideFace( a, b, c, detail ) { const cols = detail + 1; // we use this multidimensional array as a data structure for creating the subdivision const v = []; // construct all of the vertices for this subdivision for ( let i = 0; i <= cols; i ++ ) { v[ i ] = []; const aj = a.clone().lerp( c, i / cols ); const bj = b.clone().lerp( c, i / cols ); const rows = cols - i; for ( let j = 0; j <= rows; j ++ ) { if ( j === 0 && i === cols ) { v[ i ][ j ] = aj; } else { v[ i ][ j ] = aj.clone().lerp( bj, j / rows ); } } } // construct all of the faces for ( let i = 0; i < cols; i ++ ) { for ( let j = 0; j < 2 * ( cols - i ) - 1; j ++ ) { const k = Math.floor( j / 2 ); if ( j % 2 === 0 ) { pushVertex( v[ i ][ k + 1 ] ); pushVertex( v[ i + 1 ][ k ] ); pushVertex( v[ i ][ k ] ); } else { pushVertex( v[ i ][ k + 1 ] ); pushVertex( v[ i + 1 ][ k + 1 ] ); pushVertex( v[ i + 1 ][ k ] ); } } } } function applyRadius( radius ) { const vertex = new Vector3(); // iterate over the entire buffer and apply the radius to each vertex for ( let i = 0; i < vertexBuffer.length; i += 3 ) { vertex.x = vertexBuffer[ i + 0 ]; vertex.y = vertexBuffer[ i + 1 ]; vertex.z = vertexBuffer[ i + 2 ]; vertex.normalize().multiplyScalar( radius ); vertexBuffer[ i + 0 ] = vertex.x; vertexBuffer[ i + 1 ] = vertex.y; vertexBuffer[ i + 2 ] = vertex.z; } } function generateUVs() { const vertex = new Vector3(); for ( let i = 0; i < vertexBuffer.length; i += 3 ) { vertex.x = vertexBuffer[ i + 0 ]; vertex.y = vertexBuffer[ i + 1 ]; vertex.z = vertexBuffer[ i + 2 ]; const u = azimuth( vertex ) / 2 / Math.PI + 0.5; const v = inclination( vertex ) / Math.PI + 0.5; uvBuffer.push( u, 1 - v ); } correctUVs(); correctSeam(); } function correctSeam() { // handle case when face straddles the seam, see #3269 for ( let i = 0; i < uvBuffer.length; i += 6 ) { // uv data of a single face const x0 = uvBuffer[ i + 0 ]; const x1 = uvBuffer[ i + 2 ]; const x2 = uvBuffer[ i + 4 ]; const max = Math.max( x0, x1, x2 ); const min = Math.min( x0, x1, x2 ); // 0.9 is somewhat arbitrary if ( max > 0.9 && min < 0.1 ) { if ( x0 < 0.2 ) uvBuffer[ i + 0 ] += 1; if ( x1 < 0.2 ) uvBuffer[ i + 2 ] += 1; if ( x2 < 0.2 ) uvBuffer[ i + 4 ] += 1; } } } function pushVertex( vertex ) { vertexBuffer.push( vertex.x, vertex.y, vertex.z ); } function getVertexByIndex( index, vertex ) { const stride = index * 3; vertex.x = vertices[ stride + 0 ]; vertex.y = vertices[ stride + 1 ]; vertex.z = vertices[ stride + 2 ]; } function correctUVs() { const a = new Vector3(); const b = new Vector3(); const c = new Vector3(); const centroid = new Vector3(); const uvA = new Vector2(); const uvB = new Vector2(); const uvC = new Vector2(); for ( let i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6 ) { a.set( vertexBuffer[ i + 0 ], vertexBuffer[ i + 1 ], vertexBuffer[ i + 2 ] ); b.set( vertexBuffer[ i + 3 ], vertexBuffer[ i + 4 ], vertexBuffer[ i + 5 ] ); c.set( vertexBuffer[ i + 6 ], vertexBuffer[ i + 7 ], vertexBuffer[ i + 8 ] ); uvA.set( uvBuffer[ j + 0 ], uvBuffer[ j + 1 ] ); uvB.set( uvBuffer[ j + 2 ], uvBuffer[ j + 3 ] ); uvC.set( uvBuffer[ j + 4 ], uvBuffer[ j + 5 ] ); centroid.copy( a ).add( b ).add( c ).divideScalar( 3 ); const azi = azimuth( centroid ); correctUV( uvA, j + 0, a, azi ); correctUV( uvB, j + 2, b, azi ); correctUV( uvC, j + 4, c, azi ); } } function correctUV( uv, stride, vector, azimuth ) { if ( ( azimuth < 0 ) && ( uv.x === 1 ) ) { uvBuffer[ stride ] = uv.x - 1; } if ( ( vector.x === 0 ) && ( vector.z === 0 ) ) { uvBuffer[ stride ] = azimuth / 2 / Math.PI + 0.5; } } // Angle around the Y axis, counter-clockwise when looking from above. function azimuth( vector ) { return Math.atan2( vector.z, - vector.x ); } // Angle above the XZ plane. function inclination( vector ) { return Math.atan2( - vector.y, Math.sqrt( ( vector.x * vector.x ) + ( vector.z * vector.z ) ) ); } } static fromJSON( data ) { return new PolyhedronGeometry( data.vertices, data.indices, data.radius, data.details ); } } class DodecahedronGeometry extends PolyhedronGeometry { constructor( radius = 1, detail = 0 ) { const t = ( 1 + Math.sqrt( 5 ) ) / 2; const r = 1 / t; const vertices = [ // (±1, ±1, ±1) - 1, - 1, - 1, - 1, - 1, 1, - 1, 1, - 1, - 1, 1, 1, 1, - 1, - 1, 1, - 1, 1, 1, 1, - 1, 1, 1, 1, // (0, ±1/φ, ±φ) 0, - r, - t, 0, - r, t, 0, r, - t, 0, r, t, // (±1/φ, ±φ, 0) - r, - t, 0, - r, t, 0, r, - t, 0, r, t, 0, // (±φ, 0, ±1/φ) - t, 0, - r, t, 0, - r, - t, 0, r, t, 0, r ]; const indices = [ 3, 11, 7, 3, 7, 15, 3, 15, 13, 7, 19, 17, 7, 17, 6, 7, 6, 15, 17, 4, 8, 17, 8, 10, 17, 10, 6, 8, 0, 16, 8, 16, 2, 8, 2, 10, 0, 12, 1, 0, 1, 18, 0, 18, 16, 6, 10, 2, 6, 2, 13, 6, 13, 15, 2, 16, 18, 2, 18, 3, 2, 3, 13, 18, 1, 9, 18, 9, 11, 18, 11, 3, 4, 14, 12, 4, 12, 0, 4, 0, 8, 11, 9, 5, 11, 5, 19, 11, 19, 7, 19, 5, 14, 19, 14, 4, 19, 4, 17, 1, 12, 14, 1, 14, 5, 1, 5, 9 ]; super( vertices, indices, radius, detail ); this.type = 'DodecahedronGeometry'; this.parameters = { radius: radius, detail: detail }; } static fromJSON( data ) { return new DodecahedronGeometry( data.radius, data.detail ); } } const _v0 = new Vector3(); const _v1$1 = new Vector3(); const _normal = new Vector3(); const _triangle = new Triangle(); class EdgesGeometry extends BufferGeometry { constructor( geometry, thresholdAngle ) { super(); this.type = 'EdgesGeometry'; this.parameters = { thresholdAngle: thresholdAngle }; thresholdAngle = ( thresholdAngle !== undefined ) ? thresholdAngle : 1; if ( geometry.isGeometry === true ) { console.error( 'THREE.EdgesGeometry no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.' ); return; } const precisionPoints = 4; const precision = Math.pow( 10, precisionPoints ); const thresholdDot = Math.cos( DEG2RAD * thresholdAngle ); const indexAttr = geometry.getIndex(); const positionAttr = geometry.getAttribute( 'position' ); const indexCount = indexAttr ? indexAttr.count : positionAttr.count; const indexArr = [ 0, 0, 0 ]; const vertKeys = [ 'a', 'b', 'c' ]; const hashes = new Array( 3 ); const edgeData = {}; const vertices = []; for ( let i = 0; i < indexCount; i += 3 ) { if ( indexAttr ) { indexArr[ 0 ] = indexAttr.getX( i ); indexArr[ 1 ] = indexAttr.getX( i + 1 ); indexArr[ 2 ] = indexAttr.getX( i + 2 ); } else { indexArr[ 0 ] = i; indexArr[ 1 ] = i + 1; indexArr[ 2 ] = i + 2; } const { a, b, c } = _triangle; a.fromBufferAttribute( positionAttr, indexArr[ 0 ] ); b.fromBufferAttribute( positionAttr, indexArr[ 1 ] ); c.fromBufferAttribute( positionAttr, indexArr[ 2 ] ); _triangle.getNormal( _normal ); // create hashes for the edge from the vertices hashes[ 0 ] = `${ Math.round( a.x * precision ) },${ Math.round( a.y * precision ) },${ Math.round( a.z * precision ) }`; hashes[ 1 ] = `${ Math.round( b.x * precision ) },${ Math.round( b.y * precision ) },${ Math.round( b.z * precision ) }`; hashes[ 2 ] = `${ Math.round( c.x * precision ) },${ Math.round( c.y * precision ) },${ Math.round( c.z * precision ) }`; // skip degenerate triangles if ( hashes[ 0 ] === hashes[ 1 ] || hashes[ 1 ] === hashes[ 2 ] || hashes[ 2 ] === hashes[ 0 ] ) { continue; } // iterate over every edge for ( let j = 0; j < 3; j ++ ) { // get the first and next vertex making up the edge const jNext = ( j + 1 ) % 3; const vecHash0 = hashes[ j ]; const vecHash1 = hashes[ jNext ]; const v0 = _triangle[ vertKeys[ j ] ]; const v1 = _triangle[ vertKeys[ jNext ] ]; const hash = `${ vecHash0 }_${ vecHash1 }`; const reverseHash = `${ vecHash1 }_${ vecHash0 }`; if ( reverseHash in edgeData && edgeData[ reverseHash ] ) { // if we found a sibling edge add it into the vertex array if // it meets the angle threshold and delete the edge from the map. if ( _normal.dot( edgeData[ reverseHash ].normal ) <= thresholdDot ) { vertices.push( v0.x, v0.y, v0.z ); vertices.push( v1.x, v1.y, v1.z ); } edgeData[ reverseHash ] = null; } else if ( ! ( hash in edgeData ) ) { // if we've already got an edge here then skip adding a new one edgeData[ hash ] = { index0: indexArr[ j ], index1: indexArr[ jNext ], normal: _normal.clone(), }; } } } // iterate over all remaining, unmatched edges and add them to the vertex array for ( const key in edgeData ) { if ( edgeData[ key ] ) { const { index0, index1 } = edgeData[ key ]; _v0.fromBufferAttribute( positionAttr, index0 ); _v1$1.fromBufferAttribute( positionAttr, index1 ); vertices.push( _v0.x, _v0.y, _v0.z ); vertices.push( _v1$1.x, _v1$1.y, _v1$1.z ); } } this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); } } /** * Extensible curve object. * * Some common of curve methods: * .getPoint( t, optionalTarget ), .getTangent( t, optionalTarget ) * .getPointAt( u, optionalTarget ), .getTangentAt( u, optionalTarget ) * .getPoints(), .getSpacedPoints() * .getLength() * .updateArcLengths() * * This following curves inherit from THREE.Curve: * * -- 2D curves -- * THREE.ArcCurve * THREE.CubicBezierCurve * THREE.EllipseCurve * THREE.LineCurve * THREE.QuadraticBezierCurve * THREE.SplineCurve * * -- 3D curves -- * THREE.CatmullRomCurve3 * THREE.CubicBezierCurve3 * THREE.LineCurve3 * THREE.QuadraticBezierCurve3 * * A series of curves can be represented as a THREE.CurvePath. * **/ class Curve { constructor() { this.type = 'Curve'; this.arcLengthDivisions = 200; } // Virtual base class method to overwrite and implement in subclasses // - t [0 .. 1] getPoint( /* t, optionalTarget */ ) { console.warn( 'THREE.Curve: .getPoint() not implemented.' ); return null; } // Get point at relative position in curve according to arc length // - u [0 .. 1] getPointAt( u, optionalTarget ) { const t = this.getUtoTmapping( u ); return this.getPoint( t, optionalTarget ); } // Get sequence of points using getPoint( t ) getPoints( divisions = 5 ) { const points = []; for ( let d = 0; d <= divisions; d ++ ) { points.push( this.getPoint( d / divisions ) ); } return points; } // Get sequence of points using getPointAt( u ) getSpacedPoints( divisions = 5 ) { const points = []; for ( let d = 0; d <= divisions; d ++ ) { points.push( this.getPointAt( d / divisions ) ); } return points; } // Get total curve arc length getLength() { const lengths = this.getLengths(); return lengths[ lengths.length - 1 ]; } // Get list of cumulative segment lengths getLengths( divisions = this.arcLengthDivisions ) { if ( this.cacheArcLengths && ( this.cacheArcLengths.length === divisions + 1 ) && ! this.needsUpdate ) { return this.cacheArcLengths; } this.needsUpdate = false; const cache = []; let current, last = this.getPoint( 0 ); let sum = 0; cache.push( 0 ); for ( let p = 1; p <= divisions; p ++ ) { current = this.getPoint( p / divisions ); sum += current.distanceTo( last ); cache.push( sum ); last = current; } this.cacheArcLengths = cache; return cache; // { sums: cache, sum: sum }; Sum is in the last element. } updateArcLengths() { this.needsUpdate = true; this.getLengths(); } // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant getUtoTmapping( u, distance ) { const arcLengths = this.getLengths(); let i = 0; const il = arcLengths.length; let targetArcLength; // The targeted u distance value to get if ( distance ) { targetArcLength = distance; } else { targetArcLength = u * arcLengths[ il - 1 ]; } // binary search for the index with largest value smaller than target u distance let low = 0, high = il - 1, comparison; while ( low <= high ) { i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats comparison = arcLengths[ i ] - targetArcLength; if ( comparison < 0 ) { low = i + 1; } else if ( comparison > 0 ) { high = i - 1; } else { high = i; break; // DONE } } i = high; if ( arcLengths[ i ] === targetArcLength ) { return i / ( il - 1 ); } // we could get finer grain at lengths, or use simple interpolation between two points const lengthBefore = arcLengths[ i ]; const lengthAfter = arcLengths[ i + 1 ]; const segmentLength = lengthAfter - lengthBefore; // determine where we are between the 'before' and 'after' points const segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength; // add that fractional amount to t const t = ( i + segmentFraction ) / ( il - 1 ); return t; } // Returns a unit vector tangent at t // In case any sub curve does not implement its tangent derivation, // 2 points a small delta apart will be used to find its gradient // which seems to give a reasonable approximation getTangent( t, optionalTarget ) { const delta = 0.0001; let t1 = t - delta; let t2 = t + delta; // Capping in case of danger if ( t1 < 0 ) t1 = 0; if ( t2 > 1 ) t2 = 1; const pt1 = this.getPoint( t1 ); const pt2 = this.getPoint( t2 ); const tangent = optionalTarget || ( ( pt1.isVector2 ) ? new Vector2() : new Vector3() ); tangent.copy( pt2 ).sub( pt1 ).normalize(); return tangent; } getTangentAt( u, optionalTarget ) { const t = this.getUtoTmapping( u ); return this.getTangent( t, optionalTarget ); } computeFrenetFrames( segments, closed ) { // see http://www.cs.indiana.edu/pub/techreports/TR425.pdf const normal = new Vector3(); const tangents = []; const normals = []; const binormals = []; const vec = new Vector3(); const mat = new Matrix4(); // compute the tangent vectors for each segment on the curve for ( let i = 0; i <= segments; i ++ ) { const u = i / segments; tangents[ i ] = this.getTangentAt( u, new Vector3() ); tangents[ i ].normalize(); } // select an initial normal vector perpendicular to the first tangent vector, // and in the direction of the minimum tangent xyz component normals[ 0 ] = new Vector3(); binormals[ 0 ] = new Vector3(); let min = Number.MAX_VALUE; const tx = Math.abs( tangents[ 0 ].x ); const ty = Math.abs( tangents[ 0 ].y ); const tz = Math.abs( tangents[ 0 ].z ); if ( tx <= min ) { min = tx; normal.set( 1, 0, 0 ); } if ( ty <= min ) { min = ty; normal.set( 0, 1, 0 ); } if ( tz <= min ) { normal.set( 0, 0, 1 ); } vec.crossVectors( tangents[ 0 ], normal ).normalize(); normals[ 0 ].crossVectors( tangents[ 0 ], vec ); binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ); // compute the slowly-varying normal and binormal vectors for each segment on the curve for ( let i = 1; i <= segments; i ++ ) { normals[ i ] = normals[ i - 1 ].clone(); binormals[ i ] = binormals[ i - 1 ].clone(); vec.crossVectors( tangents[ i - 1 ], tangents[ i ] ); if ( vec.length() > Number.EPSILON ) { vec.normalize(); const theta = Math.acos( clamp( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) ); } binormals[ i ].crossVectors( tangents[ i ], normals[ i ] ); } // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same if ( closed === true ) { let theta = Math.acos( clamp( normals[ 0 ].dot( normals[ segments ] ), - 1, 1 ) ); theta /= segments; if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ segments ] ) ) > 0 ) { theta = - theta; } for ( let i = 1; i <= segments; i ++ ) { // twist a little... normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) ); binormals[ i ].crossVectors( tangents[ i ], normals[ i ] ); } } return { tangents: tangents, normals: normals, binormals: binormals }; } clone() { return new this.constructor().copy( this ); } copy( source ) { this.arcLengthDivisions = source.arcLengthDivisions; return this; } toJSON() { const data = { metadata: { version: 4.5, type: 'Curve', generator: 'Curve.toJSON' } }; data.arcLengthDivisions = this.arcLengthDivisions; data.type = this.type; return data; } fromJSON( json ) { this.arcLengthDivisions = json.arcLengthDivisions; return this; } } class EllipseCurve extends Curve { constructor( aX = 0, aY = 0, xRadius = 1, yRadius = 1, aStartAngle = 0, aEndAngle = Math.PI * 2, aClockwise = false, aRotation = 0 ) { super(); this.type = 'EllipseCurve'; this.aX = aX; this.aY = aY; this.xRadius = xRadius; this.yRadius = yRadius; this.aStartAngle = aStartAngle; this.aEndAngle = aEndAngle; this.aClockwise = aClockwise; this.aRotation = aRotation; } getPoint( t, optionalTarget ) { const point = optionalTarget || new Vector2(); const twoPi = Math.PI * 2; let deltaAngle = this.aEndAngle - this.aStartAngle; const samePoints = Math.abs( deltaAngle ) < Number.EPSILON; // ensures that deltaAngle is 0 .. 2 PI while ( deltaAngle < 0 ) deltaAngle += twoPi; while ( deltaAngle > twoPi ) deltaAngle -= twoPi; if ( deltaAngle < Number.EPSILON ) { if ( samePoints ) { deltaAngle = 0; } else { deltaAngle = twoPi; } } if ( this.aClockwise === true && ! samePoints ) { if ( deltaAngle === twoPi ) { deltaAngle = - twoPi; } else { deltaAngle = deltaAngle - twoPi; } } const angle = this.aStartAngle + t * deltaAngle; let x = this.aX + this.xRadius * Math.cos( angle ); let y = this.aY + this.yRadius * Math.sin( angle ); if ( this.aRotation !== 0 ) { const cos = Math.cos( this.aRotation ); const sin = Math.sin( this.aRotation ); const tx = x - this.aX; const ty = y - this.aY; // Rotate the point about the center of the ellipse. x = tx * cos - ty * sin + this.aX; y = tx * sin + ty * cos + this.aY; } return point.set( x, y ); } copy( source ) { super.copy( source ); this.aX = source.aX; this.aY = source.aY; this.xRadius = source.xRadius; this.yRadius = source.yRadius; this.aStartAngle = source.aStartAngle; this.aEndAngle = source.aEndAngle; this.aClockwise = source.aClockwise; this.aRotation = source.aRotation; return this; } toJSON() { const data = super.toJSON(); data.aX = this.aX; data.aY = this.aY; data.xRadius = this.xRadius; data.yRadius = this.yRadius; data.aStartAngle = this.aStartAngle; data.aEndAngle = this.aEndAngle; data.aClockwise = this.aClockwise; data.aRotation = this.aRotation; return data; } fromJSON( json ) { super.fromJSON( json ); this.aX = json.aX; this.aY = json.aY; this.xRadius = json.xRadius; this.yRadius = json.yRadius; this.aStartAngle = json.aStartAngle; this.aEndAngle = json.aEndAngle; this.aClockwise = json.aClockwise; this.aRotation = json.aRotation; return this; } } EllipseCurve.prototype.isEllipseCurve = true; class ArcCurve extends EllipseCurve { constructor( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { super( aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise ); this.type = 'ArcCurve'; } } ArcCurve.prototype.isArcCurve = true; /** * Centripetal CatmullRom Curve - which is useful for avoiding * cusps and self-intersections in non-uniform catmull rom curves. * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf * * curve.type accepts centripetal(default), chordal and catmullrom * curve.tension is used for catmullrom which defaults to 0.5 */ /* Based on an optimized c++ solution in - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/ - http://ideone.com/NoEbVM This CubicPoly class could be used for reusing some variables and calculations, but for three.js curve use, it could be possible inlined and flatten into a single function call which can be placed in CurveUtils. */ function CubicPoly() { let c0 = 0, c1 = 0, c2 = 0, c3 = 0; /* * Compute coefficients for a cubic polynomial * p(s) = c0 + c1*s + c2*s^2 + c3*s^3 * such that * p(0) = x0, p(1) = x1 * and * p'(0) = t0, p'(1) = t1. */ function init( x0, x1, t0, t1 ) { c0 = x0; c1 = t0; c2 = - 3 * x0 + 3 * x1 - 2 * t0 - t1; c3 = 2 * x0 - 2 * x1 + t0 + t1; } return { initCatmullRom: function ( x0, x1, x2, x3, tension ) { init( x1, x2, tension * ( x2 - x0 ), tension * ( x3 - x1 ) ); }, initNonuniformCatmullRom: function ( x0, x1, x2, x3, dt0, dt1, dt2 ) { // compute tangents when parameterized in [t1,t2] let t1 = ( x1 - x0 ) / dt0 - ( x2 - x0 ) / ( dt0 + dt1 ) + ( x2 - x1 ) / dt1; let t2 = ( x2 - x1 ) / dt1 - ( x3 - x1 ) / ( dt1 + dt2 ) + ( x3 - x2 ) / dt2; // rescale tangents for parametrization in [0,1] t1 *= dt1; t2 *= dt1; init( x1, x2, t1, t2 ); }, calc: function ( t ) { const t2 = t * t; const t3 = t2 * t; return c0 + c1 * t + c2 * t2 + c3 * t3; } }; } // const tmp = new Vector3(); const px = new CubicPoly(), py = new CubicPoly(), pz = new CubicPoly(); class CatmullRomCurve3 extends Curve { constructor( points = [], closed = false, curveType = 'centripetal', tension = 0.5 ) { super(); this.type = 'CatmullRomCurve3'; this.points = points; this.closed = closed; this.curveType = curveType; this.tension = tension; } getPoint( t, optionalTarget = new Vector3() ) { const point = optionalTarget; const points = this.points; const l = points.length; const p = ( l - ( this.closed ? 0 : 1 ) ) * t; let intPoint = Math.floor( p ); let weight = p - intPoint; if ( this.closed ) { intPoint += intPoint > 0 ? 0 : ( Math.floor( Math.abs( intPoint ) / l ) + 1 ) * l; } else if ( weight === 0 && intPoint === l - 1 ) { intPoint = l - 2; weight = 1; } let p0, p3; // 4 points (p1 & p2 defined below) if ( this.closed || intPoint > 0 ) { p0 = points[ ( intPoint - 1 ) % l ]; } else { // extrapolate first point tmp.subVectors( points[ 0 ], points[ 1 ] ).add( points[ 0 ] ); p0 = tmp; } const p1 = points[ intPoint % l ]; const p2 = points[ ( intPoint + 1 ) % l ]; if ( this.closed || intPoint + 2 < l ) { p3 = points[ ( intPoint + 2 ) % l ]; } else { // extrapolate last point tmp.subVectors( points[ l - 1 ], points[ l - 2 ] ).add( points[ l - 1 ] ); p3 = tmp; } if ( this.curveType === 'centripetal' || this.curveType === 'chordal' ) { // init Centripetal / Chordal Catmull-Rom const pow = this.curveType === 'chordal' ? 0.5 : 0.25; let dt0 = Math.pow( p0.distanceToSquared( p1 ), pow ); let dt1 = Math.pow( p1.distanceToSquared( p2 ), pow ); let dt2 = Math.pow( p2.distanceToSquared( p3 ), pow ); // safety check for repeated points if ( dt1 < 1e-4 ) dt1 = 1.0; if ( dt0 < 1e-4 ) dt0 = dt1; if ( dt2 < 1e-4 ) dt2 = dt1; px.initNonuniformCatmullRom( p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2 ); py.initNonuniformCatmullRom( p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2 ); pz.initNonuniformCatmullRom( p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2 ); } else if ( this.curveType === 'catmullrom' ) { px.initCatmullRom( p0.x, p1.x, p2.x, p3.x, this.tension ); py.initCatmullRom( p0.y, p1.y, p2.y, p3.y, this.tension ); pz.initCatmullRom( p0.z, p1.z, p2.z, p3.z, this.tension ); } point.set( px.calc( weight ), py.calc( weight ), pz.calc( weight ) ); return point; } copy( source ) { super.copy( source ); this.points = []; for ( let i = 0, l = source.points.length; i < l; i ++ ) { const point = source.points[ i ]; this.points.push( point.clone() ); } this.closed = source.closed; this.curveType = source.curveType; this.tension = source.tension; return this; } toJSON() { const data = super.toJSON(); data.points = []; for ( let i = 0, l = this.points.length; i < l; i ++ ) { const point = this.points[ i ]; data.points.push( point.toArray() ); } data.closed = this.closed; data.curveType = this.curveType; data.tension = this.tension; return data; } fromJSON( json ) { super.fromJSON( json ); this.points = []; for ( let i = 0, l = json.points.length; i < l; i ++ ) { const point = json.points[ i ]; this.points.push( new Vector3().fromArray( point ) ); } this.closed = json.closed; this.curveType = json.curveType; this.tension = json.tension; return this; } } CatmullRomCurve3.prototype.isCatmullRomCurve3 = true; /** * Bezier Curves formulas obtained from * http://en.wikipedia.org/wiki/Bézier_curve */ function CatmullRom( t, p0, p1, p2, p3 ) { const v0 = ( p2 - p0 ) * 0.5; const v1 = ( p3 - p1 ) * 0.5; const t2 = t * t; const t3 = t * t2; return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1; } // function QuadraticBezierP0( t, p ) { const k = 1 - t; return k * k * p; } function QuadraticBezierP1( t, p ) { return 2 * ( 1 - t ) * t * p; } function QuadraticBezierP2( t, p ) { return t * t * p; } function QuadraticBezier( t, p0, p1, p2 ) { return QuadraticBezierP0( t, p0 ) + QuadraticBezierP1( t, p1 ) + QuadraticBezierP2( t, p2 ); } // function CubicBezierP0( t, p ) { const k = 1 - t; return k * k * k * p; } function CubicBezierP1( t, p ) { const k = 1 - t; return 3 * k * k * t * p; } function CubicBezierP2( t, p ) { return 3 * ( 1 - t ) * t * t * p; } function CubicBezierP3( t, p ) { return t * t * t * p; } function CubicBezier( t, p0, p1, p2, p3 ) { return CubicBezierP0( t, p0 ) + CubicBezierP1( t, p1 ) + CubicBezierP2( t, p2 ) + CubicBezierP3( t, p3 ); } class CubicBezierCurve extends Curve { constructor( v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2(), v3 = new Vector2() ) { super(); this.type = 'CubicBezierCurve'; this.v0 = v0; this.v1 = v1; this.v2 = v2; this.v3 = v3; } getPoint( t, optionalTarget = new Vector2() ) { const point = optionalTarget; const v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3; point.set( CubicBezier( t, v0.x, v1.x, v2.x, v3.x ), CubicBezier( t, v0.y, v1.y, v2.y, v3.y ) ); return point; } copy( source ) { super.copy( source ); this.v0.copy( source.v0 ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); this.v3.copy( source.v3 ); return this; } toJSON() { const data = super.toJSON(); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); data.v3 = this.v3.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.v0.fromArray( json.v0 ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); this.v3.fromArray( json.v3 ); return this; } } CubicBezierCurve.prototype.isCubicBezierCurve = true; class CubicBezierCurve3 extends Curve { constructor( v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3(), v3 = new Vector3() ) { super(); this.type = 'CubicBezierCurve3'; this.v0 = v0; this.v1 = v1; this.v2 = v2; this.v3 = v3; } getPoint( t, optionalTarget = new Vector3() ) { const point = optionalTarget; const v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3; point.set( CubicBezier( t, v0.x, v1.x, v2.x, v3.x ), CubicBezier( t, v0.y, v1.y, v2.y, v3.y ), CubicBezier( t, v0.z, v1.z, v2.z, v3.z ) ); return point; } copy( source ) { super.copy( source ); this.v0.copy( source.v0 ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); this.v3.copy( source.v3 ); return this; } toJSON() { const data = super.toJSON(); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); data.v3 = this.v3.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.v0.fromArray( json.v0 ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); this.v3.fromArray( json.v3 ); return this; } } CubicBezierCurve3.prototype.isCubicBezierCurve3 = true; class LineCurve extends Curve { constructor( v1 = new Vector2(), v2 = new Vector2() ) { super(); this.type = 'LineCurve'; this.v1 = v1; this.v2 = v2; } getPoint( t, optionalTarget = new Vector2() ) { const point = optionalTarget; if ( t === 1 ) { point.copy( this.v2 ); } else { point.copy( this.v2 ).sub( this.v1 ); point.multiplyScalar( t ).add( this.v1 ); } return point; } // Line curve is linear, so we can overwrite default getPointAt getPointAt( u, optionalTarget ) { return this.getPoint( u, optionalTarget ); } getTangent( t, optionalTarget ) { const tangent = optionalTarget || new Vector2(); tangent.copy( this.v2 ).sub( this.v1 ).normalize(); return tangent; } copy( source ) { super.copy( source ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); return this; } toJSON() { const data = super.toJSON(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); return this; } } LineCurve.prototype.isLineCurve = true; class LineCurve3 extends Curve { constructor( v1 = new Vector3(), v2 = new Vector3() ) { super(); this.type = 'LineCurve3'; this.isLineCurve3 = true; this.v1 = v1; this.v2 = v2; } getPoint( t, optionalTarget = new Vector3() ) { const point = optionalTarget; if ( t === 1 ) { point.copy( this.v2 ); } else { point.copy( this.v2 ).sub( this.v1 ); point.multiplyScalar( t ).add( this.v1 ); } return point; } // Line curve is linear, so we can overwrite default getPointAt getPointAt( u, optionalTarget ) { return this.getPoint( u, optionalTarget ); } copy( source ) { super.copy( source ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); return this; } toJSON() { const data = super.toJSON(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); return this; } } class QuadraticBezierCurve extends Curve { constructor( v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2() ) { super(); this.type = 'QuadraticBezierCurve'; this.v0 = v0; this.v1 = v1; this.v2 = v2; } getPoint( t, optionalTarget = new Vector2() ) { const point = optionalTarget; const v0 = this.v0, v1 = this.v1, v2 = this.v2; point.set( QuadraticBezier( t, v0.x, v1.x, v2.x ), QuadraticBezier( t, v0.y, v1.y, v2.y ) ); return point; } copy( source ) { super.copy( source ); this.v0.copy( source.v0 ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); return this; } toJSON() { const data = super.toJSON(); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.v0.fromArray( json.v0 ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); return this; } } QuadraticBezierCurve.prototype.isQuadraticBezierCurve = true; class QuadraticBezierCurve3 extends Curve { constructor( v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3() ) { super(); this.type = 'QuadraticBezierCurve3'; this.v0 = v0; this.v1 = v1; this.v2 = v2; } getPoint( t, optionalTarget = new Vector3() ) { const point = optionalTarget; const v0 = this.v0, v1 = this.v1, v2 = this.v2; point.set( QuadraticBezier( t, v0.x, v1.x, v2.x ), QuadraticBezier( t, v0.y, v1.y, v2.y ), QuadraticBezier( t, v0.z, v1.z, v2.z ) ); return point; } copy( source ) { super.copy( source ); this.v0.copy( source.v0 ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); return this; } toJSON() { const data = super.toJSON(); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.v0.fromArray( json.v0 ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); return this; } } QuadraticBezierCurve3.prototype.isQuadraticBezierCurve3 = true; class SplineCurve extends Curve { constructor( points = [] ) { super(); this.type = 'SplineCurve'; this.points = points; } getPoint( t, optionalTarget = new Vector2() ) { const point = optionalTarget; const points = this.points; const p = ( points.length - 1 ) * t; const intPoint = Math.floor( p ); const weight = p - intPoint; const p0 = points[ intPoint === 0 ? intPoint : intPoint - 1 ]; const p1 = points[ intPoint ]; const p2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ]; const p3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ]; point.set( CatmullRom( weight, p0.x, p1.x, p2.x, p3.x ), CatmullRom( weight, p0.y, p1.y, p2.y, p3.y ) ); return point; } copy( source ) { super.copy( source ); this.points = []; for ( let i = 0, l = source.points.length; i < l; i ++ ) { const point = source.points[ i ]; this.points.push( point.clone() ); } return this; } toJSON() { const data = super.toJSON(); data.points = []; for ( let i = 0, l = this.points.length; i < l; i ++ ) { const point = this.points[ i ]; data.points.push( point.toArray() ); } return data; } fromJSON( json ) { super.fromJSON( json ); this.points = []; for ( let i = 0, l = json.points.length; i < l; i ++ ) { const point = json.points[ i ]; this.points.push( new Vector2().fromArray( point ) ); } return this; } } SplineCurve.prototype.isSplineCurve = true; var Curves = /*#__PURE__*/Object.freeze({ __proto__: null, ArcCurve: ArcCurve, CatmullRomCurve3: CatmullRomCurve3, CubicBezierCurve: CubicBezierCurve, CubicBezierCurve3: CubicBezierCurve3, EllipseCurve: EllipseCurve, LineCurve: LineCurve, LineCurve3: LineCurve3, QuadraticBezierCurve: QuadraticBezierCurve, QuadraticBezierCurve3: QuadraticBezierCurve3, SplineCurve: SplineCurve }); /** * Port from https://github.com/mapbox/earcut (v2.2.2) */ const Earcut = { triangulate: function ( data, holeIndices, dim = 2 ) { const hasHoles = holeIndices && holeIndices.length; const outerLen = hasHoles ? holeIndices[ 0 ] * dim : data.length; let outerNode = linkedList( data, 0, outerLen, dim, true ); const triangles = []; if ( ! outerNode || outerNode.next === outerNode.prev ) return triangles; let minX, minY, maxX, maxY, x, y, invSize; if ( hasHoles ) outerNode = eliminateHoles( data, holeIndices, outerNode, dim ); // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox if ( data.length > 80 * dim ) { minX = maxX = data[ 0 ]; minY = maxY = data[ 1 ]; for ( let i = dim; i < outerLen; i += dim ) { x = data[ i ]; y = data[ i + 1 ]; if ( x < minX ) minX = x; if ( y < minY ) minY = y; if ( x > maxX ) maxX = x; if ( y > maxY ) maxY = y; } // minX, minY and invSize are later used to transform coords into integers for z-order calculation invSize = Math.max( maxX - minX, maxY - minY ); invSize = invSize !== 0 ? 1 / invSize : 0; } earcutLinked( outerNode, triangles, dim, minX, minY, invSize ); return triangles; } }; // create a circular doubly linked list from polygon points in the specified winding order function linkedList( data, start, end, dim, clockwise ) { let i, last; if ( clockwise === ( signedArea( data, start, end, dim ) > 0 ) ) { for ( i = start; i < end; i += dim ) last = insertNode( i, data[ i ], data[ i + 1 ], last ); } else { for ( i = end - dim; i >= start; i -= dim ) last = insertNode( i, data[ i ], data[ i + 1 ], last ); } if ( last && equals( last, last.next ) ) { removeNode( last ); last = last.next; } return last; } // eliminate colinear or duplicate points function filterPoints( start, end ) { if ( ! start ) return start; if ( ! end ) end = start; let p = start, again; do { again = false; if ( ! p.steiner && ( equals( p, p.next ) || area( p.prev, p, p.next ) === 0 ) ) { removeNode( p ); p = end = p.prev; if ( p === p.next ) break; again = true; } else { p = p.next; } } while ( again || p !== end ); return end; } // main ear slicing loop which triangulates a polygon (given as a linked list) function earcutLinked( ear, triangles, dim, minX, minY, invSize, pass ) { if ( ! ear ) return; // interlink polygon nodes in z-order if ( ! pass && invSize ) indexCurve( ear, minX, minY, invSize ); let stop = ear, prev, next; // iterate through ears, slicing them one by one while ( ear.prev !== ear.next ) { prev = ear.prev; next = ear.next; if ( invSize ? isEarHashed( ear, minX, minY, invSize ) : isEar( ear ) ) { // cut off the triangle triangles.push( prev.i / dim ); triangles.push( ear.i / dim ); triangles.push( next.i / dim ); removeNode( ear ); // skipping the next vertex leads to less sliver triangles ear = next.next; stop = next.next; continue; } ear = next; // if we looped through the whole remaining polygon and can't find any more ears if ( ear === stop ) { // try filtering points and slicing again if ( ! pass ) { earcutLinked( filterPoints( ear ), triangles, dim, minX, minY, invSize, 1 ); // if this didn't work, try curing all small self-intersections locally } else if ( pass === 1 ) { ear = cureLocalIntersections( filterPoints( ear ), triangles, dim ); earcutLinked( ear, triangles, dim, minX, minY, invSize, 2 ); // as a last resort, try splitting the remaining polygon into two } else if ( pass === 2 ) { splitEarcut( ear, triangles, dim, minX, minY, invSize ); } break; } } } // check whether a polygon node forms a valid ear with adjacent nodes function isEar( ear ) { const a = ear.prev, b = ear, c = ear.next; if ( area( a, b, c ) >= 0 ) return false; // reflex, can't be an ear // now make sure we don't have other points inside the potential ear let p = ear.next.next; while ( p !== ear.prev ) { if ( pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) && area( p.prev, p, p.next ) >= 0 ) return false; p = p.next; } return true; } function isEarHashed( ear, minX, minY, invSize ) { const a = ear.prev, b = ear, c = ear.next; if ( area( a, b, c ) >= 0 ) return false; // reflex, can't be an ear // triangle bbox; min & max are calculated like this for speed const minTX = a.x < b.x ? ( a.x < c.x ? a.x : c.x ) : ( b.x < c.x ? b.x : c.x ), minTY = a.y < b.y ? ( a.y < c.y ? a.y : c.y ) : ( b.y < c.y ? b.y : c.y ), maxTX = a.x > b.x ? ( a.x > c.x ? a.x : c.x ) : ( b.x > c.x ? b.x : c.x ), maxTY = a.y > b.y ? ( a.y > c.y ? a.y : c.y ) : ( b.y > c.y ? b.y : c.y ); // z-order range for the current triangle bbox; const minZ = zOrder( minTX, minTY, minX, minY, invSize ), maxZ = zOrder( maxTX, maxTY, minX, minY, invSize ); let p = ear.prevZ, n = ear.nextZ; // look for points inside the triangle in both directions while ( p && p.z >= minZ && n && n.z <= maxZ ) { if ( p !== ear.prev && p !== ear.next && pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) && area( p.prev, p, p.next ) >= 0 ) return false; p = p.prevZ; if ( n !== ear.prev && n !== ear.next && pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y ) && area( n.prev, n, n.next ) >= 0 ) return false; n = n.nextZ; } // look for remaining points in decreasing z-order while ( p && p.z >= minZ ) { if ( p !== ear.prev && p !== ear.next && pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) && area( p.prev, p, p.next ) >= 0 ) return false; p = p.prevZ; } // look for remaining points in increasing z-order while ( n && n.z <= maxZ ) { if ( n !== ear.prev && n !== ear.next && pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y ) && area( n.prev, n, n.next ) >= 0 ) return false; n = n.nextZ; } return true; } // go through all polygon nodes and cure small local self-intersections function cureLocalIntersections( start, triangles, dim ) { let p = start; do { const a = p.prev, b = p.next.next; if ( ! equals( a, b ) && intersects( a, p, p.next, b ) && locallyInside( a, b ) && locallyInside( b, a ) ) { triangles.push( a.i / dim ); triangles.push( p.i / dim ); triangles.push( b.i / dim ); // remove two nodes involved removeNode( p ); removeNode( p.next ); p = start = b; } p = p.next; } while ( p !== start ); return filterPoints( p ); } // try splitting polygon into two and triangulate them independently function splitEarcut( start, triangles, dim, minX, minY, invSize ) { // look for a valid diagonal that divides the polygon into two let a = start; do { let b = a.next.next; while ( b !== a.prev ) { if ( a.i !== b.i && isValidDiagonal( a, b ) ) { // split the polygon in two by the diagonal let c = splitPolygon( a, b ); // filter colinear points around the cuts a = filterPoints( a, a.next ); c = filterPoints( c, c.next ); // run earcut on each half earcutLinked( a, triangles, dim, minX, minY, invSize ); earcutLinked( c, triangles, dim, minX, minY, invSize ); return; } b = b.next; } a = a.next; } while ( a !== start ); } // link every hole into the outer loop, producing a single-ring polygon without holes function eliminateHoles( data, holeIndices, outerNode, dim ) { const queue = []; let i, len, start, end, list; for ( i = 0, len = holeIndices.length; i < len; i ++ ) { start = holeIndices[ i ] * dim; end = i < len - 1 ? holeIndices[ i + 1 ] * dim : data.length; list = linkedList( data, start, end, dim, false ); if ( list === list.next ) list.steiner = true; queue.push( getLeftmost( list ) ); } queue.sort( compareX ); // process holes from left to right for ( i = 0; i < queue.length; i ++ ) { eliminateHole( queue[ i ], outerNode ); outerNode = filterPoints( outerNode, outerNode.next ); } return outerNode; } function compareX( a, b ) { return a.x - b.x; } // find a bridge between vertices that connects hole with an outer ring and and link it function eliminateHole( hole, outerNode ) { outerNode = findHoleBridge( hole, outerNode ); if ( outerNode ) { const b = splitPolygon( outerNode, hole ); // filter collinear points around the cuts filterPoints( outerNode, outerNode.next ); filterPoints( b, b.next ); } } // David Eberly's algorithm for finding a bridge between hole and outer polygon function findHoleBridge( hole, outerNode ) { let p = outerNode; const hx = hole.x; const hy = hole.y; let qx = - Infinity, m; // find a segment intersected by a ray from the hole's leftmost point to the left; // segment's endpoint with lesser x will be potential connection point do { if ( hy <= p.y && hy >= p.next.y && p.next.y !== p.y ) { const x = p.x + ( hy - p.y ) * ( p.next.x - p.x ) / ( p.next.y - p.y ); if ( x <= hx && x > qx ) { qx = x; if ( x === hx ) { if ( hy === p.y ) return p; if ( hy === p.next.y ) return p.next; } m = p.x < p.next.x ? p : p.next; } } p = p.next; } while ( p !== outerNode ); if ( ! m ) return null; if ( hx === qx ) return m; // hole touches outer segment; pick leftmost endpoint // look for points inside the triangle of hole point, segment intersection and endpoint; // if there are no points found, we have a valid connection; // otherwise choose the point of the minimum angle with the ray as connection point const stop = m, mx = m.x, my = m.y; let tanMin = Infinity, tan; p = m; do { if ( hx >= p.x && p.x >= mx && hx !== p.x && pointInTriangle( hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y ) ) { tan = Math.abs( hy - p.y ) / ( hx - p.x ); // tangential if ( locallyInside( p, hole ) && ( tan < tanMin || ( tan === tanMin && ( p.x > m.x || ( p.x === m.x && sectorContainsSector( m, p ) ) ) ) ) ) { m = p; tanMin = tan; } } p = p.next; } while ( p !== stop ); return m; } // whether sector in vertex m contains sector in vertex p in the same coordinates function sectorContainsSector( m, p ) { return area( m.prev, m, p.prev ) < 0 && area( p.next, m, m.next ) < 0; } // interlink polygon nodes in z-order function indexCurve( start, minX, minY, invSize ) { let p = start; do { if ( p.z === null ) p.z = zOrder( p.x, p.y, minX, minY, invSize ); p.prevZ = p.prev; p.nextZ = p.next; p = p.next; } while ( p !== start ); p.prevZ.nextZ = null; p.prevZ = null; sortLinked( p ); } // Simon Tatham's linked list merge sort algorithm // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html function sortLinked( list ) { let i, p, q, e, tail, numMerges, pSize, qSize, inSize = 1; do { p = list; list = null; tail = null; numMerges = 0; while ( p ) { numMerges ++; q = p; pSize = 0; for ( i = 0; i < inSize; i ++ ) { pSize ++; q = q.nextZ; if ( ! q ) break; } qSize = inSize; while ( pSize > 0 || ( qSize > 0 && q ) ) { if ( pSize !== 0 && ( qSize === 0 || ! q || p.z <= q.z ) ) { e = p; p = p.nextZ; pSize --; } else { e = q; q = q.nextZ; qSize --; } if ( tail ) tail.nextZ = e; else list = e; e.prevZ = tail; tail = e; } p = q; } tail.nextZ = null; inSize *= 2; } while ( numMerges > 1 ); return list; } // z-order of a point given coords and inverse of the longer side of data bbox function zOrder( x, y, minX, minY, invSize ) { // coords are transformed into non-negative 15-bit integer range x = 32767 * ( x - minX ) * invSize; y = 32767 * ( y - minY ) * invSize; x = ( x | ( x << 8 ) ) & 0x00FF00FF; x = ( x | ( x << 4 ) ) & 0x0F0F0F0F; x = ( x | ( x << 2 ) ) & 0x33333333; x = ( x | ( x << 1 ) ) & 0x55555555; y = ( y | ( y << 8 ) ) & 0x00FF00FF; y = ( y | ( y << 4 ) ) & 0x0F0F0F0F; y = ( y | ( y << 2 ) ) & 0x33333333; y = ( y | ( y << 1 ) ) & 0x55555555; return x | ( y << 1 ); } // find the leftmost node of a polygon ring function getLeftmost( start ) { let p = start, leftmost = start; do { if ( p.x < leftmost.x || ( p.x === leftmost.x && p.y < leftmost.y ) ) leftmost = p; p = p.next; } while ( p !== start ); return leftmost; } // check if a point lies within a convex triangle function pointInTriangle( ax, ay, bx, by, cx, cy, px, py ) { return ( cx - px ) * ( ay - py ) - ( ax - px ) * ( cy - py ) >= 0 && ( ax - px ) * ( by - py ) - ( bx - px ) * ( ay - py ) >= 0 && ( bx - px ) * ( cy - py ) - ( cx - px ) * ( by - py ) >= 0; } // check if a diagonal between two polygon nodes is valid (lies in polygon interior) function isValidDiagonal( a, b ) { return a.next.i !== b.i && a.prev.i !== b.i && ! intersectsPolygon( a, b ) && // dones't intersect other edges ( locallyInside( a, b ) && locallyInside( b, a ) && middleInside( a, b ) && // locally visible ( area( a.prev, a, b.prev ) || area( a, b.prev, b ) ) || // does not create opposite-facing sectors equals( a, b ) && area( a.prev, a, a.next ) > 0 && area( b.prev, b, b.next ) > 0 ); // special zero-length case } // signed area of a triangle function area( p, q, r ) { return ( q.y - p.y ) * ( r.x - q.x ) - ( q.x - p.x ) * ( r.y - q.y ); } // check if two points are equal function equals( p1, p2 ) { return p1.x === p2.x && p1.y === p2.y; } // check if two segments intersect function intersects( p1, q1, p2, q2 ) { const o1 = sign( area( p1, q1, p2 ) ); const o2 = sign( area( p1, q1, q2 ) ); const o3 = sign( area( p2, q2, p1 ) ); const o4 = sign( area( p2, q2, q1 ) ); if ( o1 !== o2 && o3 !== o4 ) return true; // general case if ( o1 === 0 && onSegment( p1, p2, q1 ) ) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1 if ( o2 === 0 && onSegment( p1, q2, q1 ) ) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1 if ( o3 === 0 && onSegment( p2, p1, q2 ) ) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2 if ( o4 === 0 && onSegment( p2, q1, q2 ) ) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2 return false; } // for collinear points p, q, r, check if point q lies on segment pr function onSegment( p, q, r ) { return q.x <= Math.max( p.x, r.x ) && q.x >= Math.min( p.x, r.x ) && q.y <= Math.max( p.y, r.y ) && q.y >= Math.min( p.y, r.y ); } function sign( num ) { return num > 0 ? 1 : num < 0 ? - 1 : 0; } // check if a polygon diagonal intersects any polygon segments function intersectsPolygon( a, b ) { let p = a; do { if ( p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && intersects( p, p.next, a, b ) ) return true; p = p.next; } while ( p !== a ); return false; } // check if a polygon diagonal is locally inside the polygon function locallyInside( a, b ) { return area( a.prev, a, a.next ) < 0 ? area( a, b, a.next ) >= 0 && area( a, a.prev, b ) >= 0 : area( a, b, a.prev ) < 0 || area( a, a.next, b ) < 0; } // check if the middle point of a polygon diagonal is inside the polygon function middleInside( a, b ) { let p = a, inside = false; const px = ( a.x + b.x ) / 2, py = ( a.y + b.y ) / 2; do { if ( ( ( p.y > py ) !== ( p.next.y > py ) ) && p.next.y !== p.y && ( px < ( p.next.x - p.x ) * ( py - p.y ) / ( p.next.y - p.y ) + p.x ) ) inside = ! inside; p = p.next; } while ( p !== a ); return inside; } // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two; // if one belongs to the outer ring and another to a hole, it merges it into a single ring function splitPolygon( a, b ) { const a2 = new Node( a.i, a.x, a.y ), b2 = new Node( b.i, b.x, b.y ), an = a.next, bp = b.prev; a.next = b; b.prev = a; a2.next = an; an.prev = a2; b2.next = a2; a2.prev = b2; bp.next = b2; b2.prev = bp; return b2; } // create a node and optionally link it with previous one (in a circular doubly linked list) function insertNode( i, x, y, last ) { const p = new Node( i, x, y ); if ( ! last ) { p.prev = p; p.next = p; } else { p.next = last.next; p.prev = last; last.next.prev = p; last.next = p; } return p; } function removeNode( p ) { p.next.prev = p.prev; p.prev.next = p.next; if ( p.prevZ ) p.prevZ.nextZ = p.nextZ; if ( p.nextZ ) p.nextZ.prevZ = p.prevZ; } function Node( i, x, y ) { // vertex index in coordinates array this.i = i; // vertex coordinates this.x = x; this.y = y; // previous and next vertex nodes in a polygon ring this.prev = null; this.next = null; // z-order curve value this.z = null; // previous and next nodes in z-order this.prevZ = null; this.nextZ = null; // indicates whether this is a steiner point this.steiner = false; } function signedArea( data, start, end, dim ) { let sum = 0; for ( let i = start, j = end - dim; i < end; i += dim ) { sum += ( data[ j ] - data[ i ] ) * ( data[ i + 1 ] + data[ j + 1 ] ); j = i; } return sum; } class ShapeUtils { // calculate area of the contour polygon static area( contour ) { const n = contour.length; let a = 0.0; for ( let p = n - 1, q = 0; q < n; p = q ++ ) { a += contour[ p ].x * contour[ q ].y - contour[ q ].x * contour[ p ].y; } return a * 0.5; } static isClockWise( pts ) { return ShapeUtils.area( pts ) < 0; } static triangulateShape( contour, holes ) { const vertices = []; // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ] const holeIndices = []; // array of hole indices const faces = []; // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ] removeDupEndPts( contour ); addContour( vertices, contour ); // let holeIndex = contour.length; holes.forEach( removeDupEndPts ); for ( let i = 0; i < holes.length; i ++ ) { holeIndices.push( holeIndex ); holeIndex += holes[ i ].length; addContour( vertices, holes[ i ] ); } // const triangles = Earcut.triangulate( vertices, holeIndices ); // for ( let i = 0; i < triangles.length; i += 3 ) { faces.push( triangles.slice( i, i + 3 ) ); } return faces; } } function removeDupEndPts( points ) { const l = points.length; if ( l > 2 && points[ l - 1 ].equals( points[ 0 ] ) ) { points.pop(); } } function addContour( vertices, contour ) { for ( let i = 0; i < contour.length; i ++ ) { vertices.push( contour[ i ].x ); vertices.push( contour[ i ].y ); } } /** * Creates extruded geometry from a path shape. * * parameters = { * * curveSegments: , // number of points on the curves * steps: , // number of points for z-side extrusions / used for subdividing segments of extrude spline too * depth: , // Depth to extrude the shape * * bevelEnabled: , // turn on bevel * bevelThickness: , // how deep into the original shape bevel goes * bevelSize: , // how far from shape outline (including bevelOffset) is bevel * bevelOffset: , // how far from shape outline does bevel start * bevelSegments: , // number of bevel layers * * extrudePath: // curve to extrude shape along * * UVGenerator: // object that provides UV generator functions * * } */ class ExtrudeGeometry extends BufferGeometry { constructor( shapes, options ) { super(); this.type = 'ExtrudeGeometry'; this.parameters = { shapes: shapes, options: options }; shapes = Array.isArray( shapes ) ? shapes : [ shapes ]; const scope = this; const verticesArray = []; const uvArray = []; for ( let i = 0, l = shapes.length; i < l; i ++ ) { const shape = shapes[ i ]; addShape( shape ); } // build geometry this.setAttribute( 'position', new Float32BufferAttribute( verticesArray, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvArray, 2 ) ); this.computeVertexNormals(); // functions function addShape( shape ) { const placeholder = []; // options const curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12; const steps = options.steps !== undefined ? options.steps : 1; let depth = options.depth !== undefined ? options.depth : 100; let bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true; let bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6; let bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2; let bevelOffset = options.bevelOffset !== undefined ? options.bevelOffset : 0; let bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3; const extrudePath = options.extrudePath; const uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator; // deprecated options if ( options.amount !== undefined ) { console.warn( 'THREE.ExtrudeBufferGeometry: amount has been renamed to depth.' ); depth = options.amount; } // let extrudePts, extrudeByPath = false; let splineTube, binormal, normal, position2; if ( extrudePath ) { extrudePts = extrudePath.getSpacedPoints( steps ); extrudeByPath = true; bevelEnabled = false; // bevels not supported for path extrusion // SETUP TNB variables // TODO1 - have a .isClosed in spline? splineTube = extrudePath.computeFrenetFrames( steps, false ); // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length); binormal = new Vector3(); normal = new Vector3(); position2 = new Vector3(); } // Safeguards if bevels are not enabled if ( ! bevelEnabled ) { bevelSegments = 0; bevelThickness = 0; bevelSize = 0; bevelOffset = 0; } // Variables initialization const shapePoints = shape.extractPoints( curveSegments ); let vertices = shapePoints.shape; const holes = shapePoints.holes; const reverse = ! ShapeUtils.isClockWise( vertices ); if ( reverse ) { vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe ... for ( let h = 0, hl = holes.length; h < hl; h ++ ) { const ahole = holes[ h ]; if ( ShapeUtils.isClockWise( ahole ) ) { holes[ h ] = ahole.reverse(); } } } const faces = ShapeUtils.triangulateShape( vertices, holes ); /* Vertices */ const contour = vertices; // vertices has all points but contour has only points of circumference for ( let h = 0, hl = holes.length; h < hl; h ++ ) { const ahole = holes[ h ]; vertices = vertices.concat( ahole ); } function scalePt2( pt, vec, size ) { if ( ! vec ) console.error( 'THREE.ExtrudeGeometry: vec does not exist' ); return vec.clone().multiplyScalar( size ).add( pt ); } const vlen = vertices.length, flen = faces.length; // Find directions for point movement function getBevelVec( inPt, inPrev, inNext ) { // computes for inPt the corresponding point inPt' on a new contour // shifted by 1 unit (length of normalized vector) to the left // if we walk along contour clockwise, this new contour is outside the old one // // inPt' is the intersection of the two lines parallel to the two // adjacent edges of inPt at a distance of 1 unit on the left side. let v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt // good reading for geometry algorithms (here: line-line intersection) // http://geomalgorithms.com/a05-_intersect-1.html const v_prev_x = inPt.x - inPrev.x, v_prev_y = inPt.y - inPrev.y; const v_next_x = inNext.x - inPt.x, v_next_y = inNext.y - inPt.y; const v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y ); // check for collinear edges const collinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x ); if ( Math.abs( collinear0 ) > Number.EPSILON ) { // not collinear // length of vectors for normalizing const v_prev_len = Math.sqrt( v_prev_lensq ); const v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y ); // shift adjacent points by unit vectors to the left const ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len ); const ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len ); const ptNextShift_x = ( inNext.x - v_next_y / v_next_len ); const ptNextShift_y = ( inNext.y + v_next_x / v_next_len ); // scaling factor for v_prev to intersection point const sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y - ( ptNextShift_y - ptPrevShift_y ) * v_next_x ) / ( v_prev_x * v_next_y - v_prev_y * v_next_x ); // vector from inPt to intersection point v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x ); v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y ); // Don't normalize!, otherwise sharp corners become ugly // but prevent crazy spikes const v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y ); if ( v_trans_lensq <= 2 ) { return new Vector2( v_trans_x, v_trans_y ); } else { shrink_by = Math.sqrt( v_trans_lensq / 2 ); } } else { // handle special case of collinear edges let direction_eq = false; // assumes: opposite if ( v_prev_x > Number.EPSILON ) { if ( v_next_x > Number.EPSILON ) { direction_eq = true; } } else { if ( v_prev_x < - Number.EPSILON ) { if ( v_next_x < - Number.EPSILON ) { direction_eq = true; } } else { if ( Math.sign( v_prev_y ) === Math.sign( v_next_y ) ) { direction_eq = true; } } } if ( direction_eq ) { // console.log("Warning: lines are a straight sequence"); v_trans_x = - v_prev_y; v_trans_y = v_prev_x; shrink_by = Math.sqrt( v_prev_lensq ); } else { // console.log("Warning: lines are a straight spike"); v_trans_x = v_prev_x; v_trans_y = v_prev_y; shrink_by = Math.sqrt( v_prev_lensq / 2 ); } } return new Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by ); } const contourMovements = []; for ( let i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) { if ( j === il ) j = 0; if ( k === il ) k = 0; // (j)---(i)---(k) // console.log('i,j,k', i, j , k) contourMovements[ i ] = getBevelVec( contour[ i ], contour[ j ], contour[ k ] ); } const holesMovements = []; let oneHoleMovements, verticesMovements = contourMovements.concat(); for ( let h = 0, hl = holes.length; h < hl; h ++ ) { const ahole = holes[ h ]; oneHoleMovements = []; for ( let i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) { if ( j === il ) j = 0; if ( k === il ) k = 0; // (j)---(i)---(k) oneHoleMovements[ i ] = getBevelVec( ahole[ i ], ahole[ j ], ahole[ k ] ); } holesMovements.push( oneHoleMovements ); verticesMovements = verticesMovements.concat( oneHoleMovements ); } // Loop bevelSegments, 1 for the front, 1 for the back for ( let b = 0; b < bevelSegments; b ++ ) { //for ( b = bevelSegments; b > 0; b -- ) { const t = b / bevelSegments; const z = bevelThickness * Math.cos( t * Math.PI / 2 ); const bs = bevelSize * Math.sin( t * Math.PI / 2 ) + bevelOffset; // contract shape for ( let i = 0, il = contour.length; i < il; i ++ ) { const vert = scalePt2( contour[ i ], contourMovements[ i ], bs ); v( vert.x, vert.y, - z ); } // expand holes for ( let h = 0, hl = holes.length; h < hl; h ++ ) { const ahole = holes[ h ]; oneHoleMovements = holesMovements[ h ]; for ( let i = 0, il = ahole.length; i < il; i ++ ) { const vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs ); v( vert.x, vert.y, - z ); } } } const bs = bevelSize + bevelOffset; // Back facing vertices for ( let i = 0; i < vlen; i ++ ) { const vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ]; if ( ! extrudeByPath ) { v( vert.x, vert.y, 0 ); } else { // v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x ); normal.copy( splineTube.normals[ 0 ] ).multiplyScalar( vert.x ); binormal.copy( splineTube.binormals[ 0 ] ).multiplyScalar( vert.y ); position2.copy( extrudePts[ 0 ] ).add( normal ).add( binormal ); v( position2.x, position2.y, position2.z ); } } // Add stepped vertices... // Including front facing vertices for ( let s = 1; s <= steps; s ++ ) { for ( let i = 0; i < vlen; i ++ ) { const vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ]; if ( ! extrudeByPath ) { v( vert.x, vert.y, depth / steps * s ); } else { // v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x ); normal.copy( splineTube.normals[ s ] ).multiplyScalar( vert.x ); binormal.copy( splineTube.binormals[ s ] ).multiplyScalar( vert.y ); position2.copy( extrudePts[ s ] ).add( normal ).add( binormal ); v( position2.x, position2.y, position2.z ); } } } // Add bevel segments planes //for ( b = 1; b <= bevelSegments; b ++ ) { for ( let b = bevelSegments - 1; b >= 0; b -- ) { const t = b / bevelSegments; const z = bevelThickness * Math.cos( t * Math.PI / 2 ); const bs = bevelSize * Math.sin( t * Math.PI / 2 ) + bevelOffset; // contract shape for ( let i = 0, il = contour.length; i < il; i ++ ) { const vert = scalePt2( contour[ i ], contourMovements[ i ], bs ); v( vert.x, vert.y, depth + z ); } // expand holes for ( let h = 0, hl = holes.length; h < hl; h ++ ) { const ahole = holes[ h ]; oneHoleMovements = holesMovements[ h ]; for ( let i = 0, il = ahole.length; i < il; i ++ ) { const vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs ); if ( ! extrudeByPath ) { v( vert.x, vert.y, depth + z ); } else { v( vert.x, vert.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z ); } } } } /* Faces */ // Top and bottom faces buildLidFaces(); // Sides faces buildSideFaces(); ///// Internal functions function buildLidFaces() { const start = verticesArray.length / 3; if ( bevelEnabled ) { let layer = 0; // steps + 1 let offset = vlen * layer; // Bottom faces for ( let i = 0; i < flen; i ++ ) { const face = faces[ i ]; f3( face[ 2 ] + offset, face[ 1 ] + offset, face[ 0 ] + offset ); } layer = steps + bevelSegments * 2; offset = vlen * layer; // Top faces for ( let i = 0; i < flen; i ++ ) { const face = faces[ i ]; f3( face[ 0 ] + offset, face[ 1 ] + offset, face[ 2 ] + offset ); } } else { // Bottom faces for ( let i = 0; i < flen; i ++ ) { const face = faces[ i ]; f3( face[ 2 ], face[ 1 ], face[ 0 ] ); } // Top faces for ( let i = 0; i < flen; i ++ ) { const face = faces[ i ]; f3( face[ 0 ] + vlen * steps, face[ 1 ] + vlen * steps, face[ 2 ] + vlen * steps ); } } scope.addGroup( start, verticesArray.length / 3 - start, 0 ); } // Create faces for the z-sides of the shape function buildSideFaces() { const start = verticesArray.length / 3; let layeroffset = 0; sidewalls( contour, layeroffset ); layeroffset += contour.length; for ( let h = 0, hl = holes.length; h < hl; h ++ ) { const ahole = holes[ h ]; sidewalls( ahole, layeroffset ); //, true layeroffset += ahole.length; } scope.addGroup( start, verticesArray.length / 3 - start, 1 ); } function sidewalls( contour, layeroffset ) { let i = contour.length; while ( -- i >= 0 ) { const j = i; let k = i - 1; if ( k < 0 ) k = contour.length - 1; //console.log('b', i,j, i-1, k,vertices.length); for ( let s = 0, sl = ( steps + bevelSegments * 2 ); s < sl; s ++ ) { const slen1 = vlen * s; const slen2 = vlen * ( s + 1 ); const a = layeroffset + j + slen1, b = layeroffset + k + slen1, c = layeroffset + k + slen2, d = layeroffset + j + slen2; f4( a, b, c, d ); } } } function v( x, y, z ) { placeholder.push( x ); placeholder.push( y ); placeholder.push( z ); } function f3( a, b, c ) { addVertex( a ); addVertex( b ); addVertex( c ); const nextIndex = verticesArray.length / 3; const uvs = uvgen.generateTopUV( scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1 ); addUV( uvs[ 0 ] ); addUV( uvs[ 1 ] ); addUV( uvs[ 2 ] ); } function f4( a, b, c, d ) { addVertex( a ); addVertex( b ); addVertex( d ); addVertex( b ); addVertex( c ); addVertex( d ); const nextIndex = verticesArray.length / 3; const uvs = uvgen.generateSideWallUV( scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1 ); addUV( uvs[ 0 ] ); addUV( uvs[ 1 ] ); addUV( uvs[ 3 ] ); addUV( uvs[ 1 ] ); addUV( uvs[ 2 ] ); addUV( uvs[ 3 ] ); } function addVertex( index ) { verticesArray.push( placeholder[ index * 3 + 0 ] ); verticesArray.push( placeholder[ index * 3 + 1 ] ); verticesArray.push( placeholder[ index * 3 + 2 ] ); } function addUV( vector2 ) { uvArray.push( vector2.x ); uvArray.push( vector2.y ); } } } toJSON() { const data = super.toJSON(); const shapes = this.parameters.shapes; const options = this.parameters.options; return toJSON$1( shapes, options, data ); } static fromJSON( data, shapes ) { const geometryShapes = []; for ( let j = 0, jl = data.shapes.length; j < jl; j ++ ) { const shape = shapes[ data.shapes[ j ] ]; geometryShapes.push( shape ); } const extrudePath = data.options.extrudePath; if ( extrudePath !== undefined ) { data.options.extrudePath = new Curves[ extrudePath.type ]().fromJSON( extrudePath ); } return new ExtrudeGeometry( geometryShapes, data.options ); } } const WorldUVGenerator = { generateTopUV: function ( geometry, vertices, indexA, indexB, indexC ) { const a_x = vertices[ indexA * 3 ]; const a_y = vertices[ indexA * 3 + 1 ]; const b_x = vertices[ indexB * 3 ]; const b_y = vertices[ indexB * 3 + 1 ]; const c_x = vertices[ indexC * 3 ]; const c_y = vertices[ indexC * 3 + 1 ]; return [ new Vector2( a_x, a_y ), new Vector2( b_x, b_y ), new Vector2( c_x, c_y ) ]; }, generateSideWallUV: function ( geometry, vertices, indexA, indexB, indexC, indexD ) { const a_x = vertices[ indexA * 3 ]; const a_y = vertices[ indexA * 3 + 1 ]; const a_z = vertices[ indexA * 3 + 2 ]; const b_x = vertices[ indexB * 3 ]; const b_y = vertices[ indexB * 3 + 1 ]; const b_z = vertices[ indexB * 3 + 2 ]; const c_x = vertices[ indexC * 3 ]; const c_y = vertices[ indexC * 3 + 1 ]; const c_z = vertices[ indexC * 3 + 2 ]; const d_x = vertices[ indexD * 3 ]; const d_y = vertices[ indexD * 3 + 1 ]; const d_z = vertices[ indexD * 3 + 2 ]; if ( Math.abs( a_y - b_y ) < Math.abs( a_x - b_x ) ) { return [ new Vector2( a_x, 1 - a_z ), new Vector2( b_x, 1 - b_z ), new Vector2( c_x, 1 - c_z ), new Vector2( d_x, 1 - d_z ) ]; } else { return [ new Vector2( a_y, 1 - a_z ), new Vector2( b_y, 1 - b_z ), new Vector2( c_y, 1 - c_z ), new Vector2( d_y, 1 - d_z ) ]; } } }; function toJSON$1( shapes, options, data ) { data.shapes = []; if ( Array.isArray( shapes ) ) { for ( let i = 0, l = shapes.length; i < l; i ++ ) { const shape = shapes[ i ]; data.shapes.push( shape.uuid ); } } else { data.shapes.push( shapes.uuid ); } if ( options.extrudePath !== undefined ) data.options.extrudePath = options.extrudePath.toJSON(); return data; } class IcosahedronGeometry extends PolyhedronGeometry { constructor( radius = 1, detail = 0 ) { const t = ( 1 + Math.sqrt( 5 ) ) / 2; const vertices = [ - 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t, 0, 0, - 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t, t, 0, - 1, t, 0, 1, - t, 0, - 1, - t, 0, 1 ]; const indices = [ 0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11, 1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8, 3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9, 4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1 ]; super( vertices, indices, radius, detail ); this.type = 'IcosahedronGeometry'; this.parameters = { radius: radius, detail: detail }; } static fromJSON( data ) { return new IcosahedronGeometry( data.radius, data.detail ); } } class LatheGeometry extends BufferGeometry { constructor( points, segments = 12, phiStart = 0, phiLength = Math.PI * 2 ) { super(); this.type = 'LatheGeometry'; this.parameters = { points: points, segments: segments, phiStart: phiStart, phiLength: phiLength }; segments = Math.floor( segments ); // clamp phiLength so it's in range of [ 0, 2PI ] phiLength = clamp( phiLength, 0, Math.PI * 2 ); // buffers const indices = []; const vertices = []; const uvs = []; // helper variables const inverseSegments = 1.0 / segments; const vertex = new Vector3(); const uv = new Vector2(); // generate vertices and uvs for ( let i = 0; i <= segments; i ++ ) { const phi = phiStart + i * inverseSegments * phiLength; const sin = Math.sin( phi ); const cos = Math.cos( phi ); for ( let j = 0; j <= ( points.length - 1 ); j ++ ) { // vertex vertex.x = points[ j ].x * sin; vertex.y = points[ j ].y; vertex.z = points[ j ].x * cos; vertices.push( vertex.x, vertex.y, vertex.z ); // uv uv.x = i / segments; uv.y = j / ( points.length - 1 ); uvs.push( uv.x, uv.y ); } } // indices for ( let i = 0; i < segments; i ++ ) { for ( let j = 0; j < ( points.length - 1 ); j ++ ) { const base = j + i * points.length; const a = base; const b = base + points.length; const c = base + points.length + 1; const d = base + 1; // faces indices.push( a, b, d ); indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); // generate normals this.computeVertexNormals(); // if the geometry is closed, we need to average the normals along the seam. // because the corresponding vertices are identical (but still have different UVs). if ( phiLength === Math.PI * 2 ) { const normals = this.attributes.normal.array; const n1 = new Vector3(); const n2 = new Vector3(); const n = new Vector3(); // this is the buffer offset for the last line of vertices const base = segments * points.length * 3; for ( let i = 0, j = 0; i < points.length; i ++, j += 3 ) { // select the normal of the vertex in the first line n1.x = normals[ j + 0 ]; n1.y = normals[ j + 1 ]; n1.z = normals[ j + 2 ]; // select the normal of the vertex in the last line n2.x = normals[ base + j + 0 ]; n2.y = normals[ base + j + 1 ]; n2.z = normals[ base + j + 2 ]; // average normals n.addVectors( n1, n2 ).normalize(); // assign the new values to both normals normals[ j + 0 ] = normals[ base + j + 0 ] = n.x; normals[ j + 1 ] = normals[ base + j + 1 ] = n.y; normals[ j + 2 ] = normals[ base + j + 2 ] = n.z; } } } static fromJSON( data ) { return new LatheGeometry( data.points, data.segments, data.phiStart, data.phiLength ); } } class OctahedronGeometry extends PolyhedronGeometry { constructor( radius = 1, detail = 0 ) { const vertices = [ 1, 0, 0, - 1, 0, 0, 0, 1, 0, 0, - 1, 0, 0, 0, 1, 0, 0, - 1 ]; const indices = [ 0, 2, 4, 0, 4, 3, 0, 3, 5, 0, 5, 2, 1, 2, 5, 1, 5, 3, 1, 3, 4, 1, 4, 2 ]; super( vertices, indices, radius, detail ); this.type = 'OctahedronGeometry'; this.parameters = { radius: radius, detail: detail }; } static fromJSON( data ) { return new OctahedronGeometry( data.radius, data.detail ); } } /** * Parametric Surfaces Geometry * based on the brilliant article by @prideout https://prideout.net/blog/old/blog/index.html@p=44.html */ class ParametricGeometry extends BufferGeometry { constructor( func, slices, stacks ) { super(); this.type = 'ParametricGeometry'; this.parameters = { func: func, slices: slices, stacks: stacks }; // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; const EPS = 0.00001; const normal = new Vector3(); const p0 = new Vector3(), p1 = new Vector3(); const pu = new Vector3(), pv = new Vector3(); if ( func.length < 3 ) { console.error( 'THREE.ParametricGeometry: Function must now modify a Vector3 as third parameter.' ); } // generate vertices, normals and uvs const sliceCount = slices + 1; for ( let i = 0; i <= stacks; i ++ ) { const v = i / stacks; for ( let j = 0; j <= slices; j ++ ) { const u = j / slices; // vertex func( u, v, p0 ); vertices.push( p0.x, p0.y, p0.z ); // normal // approximate tangent vectors via finite differences if ( u - EPS >= 0 ) { func( u - EPS, v, p1 ); pu.subVectors( p0, p1 ); } else { func( u + EPS, v, p1 ); pu.subVectors( p1, p0 ); } if ( v - EPS >= 0 ) { func( u, v - EPS, p1 ); pv.subVectors( p0, p1 ); } else { func( u, v + EPS, p1 ); pv.subVectors( p1, p0 ); } // cross product of tangent vectors returns surface normal normal.crossVectors( pu, pv ).normalize(); normals.push( normal.x, normal.y, normal.z ); // uv uvs.push( u, v ); } } // generate indices for ( let i = 0; i < stacks; i ++ ) { for ( let j = 0; j < slices; j ++ ) { const a = i * sliceCount + j; const b = i * sliceCount + j + 1; const c = ( i + 1 ) * sliceCount + j + 1; const d = ( i + 1 ) * sliceCount + j; // faces one and two indices.push( a, b, d ); indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } } class RingGeometry extends BufferGeometry { constructor( innerRadius = 0.5, outerRadius = 1, thetaSegments = 8, phiSegments = 1, thetaStart = 0, thetaLength = Math.PI * 2 ) { super(); this.type = 'RingGeometry'; this.parameters = { innerRadius: innerRadius, outerRadius: outerRadius, thetaSegments: thetaSegments, phiSegments: phiSegments, thetaStart: thetaStart, thetaLength: thetaLength }; thetaSegments = Math.max( 3, thetaSegments ); phiSegments = Math.max( 1, phiSegments ); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // some helper variables let radius = innerRadius; const radiusStep = ( ( outerRadius - innerRadius ) / phiSegments ); const vertex = new Vector3(); const uv = new Vector2(); // generate vertices, normals and uvs for ( let j = 0; j <= phiSegments; j ++ ) { for ( let i = 0; i <= thetaSegments; i ++ ) { // values are generate from the inside of the ring to the outside const segment = thetaStart + i / thetaSegments * thetaLength; // vertex vertex.x = radius * Math.cos( segment ); vertex.y = radius * Math.sin( segment ); vertices.push( vertex.x, vertex.y, vertex.z ); // normal normals.push( 0, 0, 1 ); // uv uv.x = ( vertex.x / outerRadius + 1 ) / 2; uv.y = ( vertex.y / outerRadius + 1 ) / 2; uvs.push( uv.x, uv.y ); } // increase the radius for next row of vertices radius += radiusStep; } // indices for ( let j = 0; j < phiSegments; j ++ ) { const thetaSegmentLevel = j * ( thetaSegments + 1 ); for ( let i = 0; i < thetaSegments; i ++ ) { const segment = i + thetaSegmentLevel; const a = segment; const b = segment + thetaSegments + 1; const c = segment + thetaSegments + 2; const d = segment + 1; // faces indices.push( a, b, d ); indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } static fromJSON( data ) { return new RingGeometry( data.innerRadius, data.outerRadius, data.thetaSegments, data.phiSegments, data.thetaStart, data.thetaLength ); } } class ShapeGeometry extends BufferGeometry { constructor( shapes, curveSegments = 12 ) { super(); this.type = 'ShapeGeometry'; this.parameters = { shapes: shapes, curveSegments: curveSegments }; // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // helper variables let groupStart = 0; let groupCount = 0; // allow single and array values for "shapes" parameter if ( Array.isArray( shapes ) === false ) { addShape( shapes ); } else { for ( let i = 0; i < shapes.length; i ++ ) { addShape( shapes[ i ] ); this.addGroup( groupStart, groupCount, i ); // enables MultiMaterial support groupStart += groupCount; groupCount = 0; } } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); // helper functions function addShape( shape ) { const indexOffset = vertices.length / 3; const points = shape.extractPoints( curveSegments ); let shapeVertices = points.shape; const shapeHoles = points.holes; // check direction of vertices if ( ShapeUtils.isClockWise( shapeVertices ) === false ) { shapeVertices = shapeVertices.reverse(); } for ( let i = 0, l = shapeHoles.length; i < l; i ++ ) { const shapeHole = shapeHoles[ i ]; if ( ShapeUtils.isClockWise( shapeHole ) === true ) { shapeHoles[ i ] = shapeHole.reverse(); } } const faces = ShapeUtils.triangulateShape( shapeVertices, shapeHoles ); // join vertices of inner and outer paths to a single array for ( let i = 0, l = shapeHoles.length; i < l; i ++ ) { const shapeHole = shapeHoles[ i ]; shapeVertices = shapeVertices.concat( shapeHole ); } // vertices, normals, uvs for ( let i = 0, l = shapeVertices.length; i < l; i ++ ) { const vertex = shapeVertices[ i ]; vertices.push( vertex.x, vertex.y, 0 ); normals.push( 0, 0, 1 ); uvs.push( vertex.x, vertex.y ); // world uvs } // incides for ( let i = 0, l = faces.length; i < l; i ++ ) { const face = faces[ i ]; const a = face[ 0 ] + indexOffset; const b = face[ 1 ] + indexOffset; const c = face[ 2 ] + indexOffset; indices.push( a, b, c ); groupCount += 3; } } } toJSON() { const data = super.toJSON(); const shapes = this.parameters.shapes; return toJSON( shapes, data ); } static fromJSON( data, shapes ) { const geometryShapes = []; for ( let j = 0, jl = data.shapes.length; j < jl; j ++ ) { const shape = shapes[ data.shapes[ j ] ]; geometryShapes.push( shape ); } return new ShapeGeometry( geometryShapes, data.curveSegments ); } } function toJSON( shapes, data ) { data.shapes = []; if ( Array.isArray( shapes ) ) { for ( let i = 0, l = shapes.length; i < l; i ++ ) { const shape = shapes[ i ]; data.shapes.push( shape.uuid ); } } else { data.shapes.push( shapes.uuid ); } return data; } class SphereGeometry extends BufferGeometry { constructor( radius = 1, widthSegments = 32, heightSegments = 16, phiStart = 0, phiLength = Math.PI * 2, thetaStart = 0, thetaLength = Math.PI ) { super(); this.type = 'SphereGeometry'; this.parameters = { radius: radius, widthSegments: widthSegments, heightSegments: heightSegments, phiStart: phiStart, phiLength: phiLength, thetaStart: thetaStart, thetaLength: thetaLength }; widthSegments = Math.max( 3, Math.floor( widthSegments ) ); heightSegments = Math.max( 2, Math.floor( heightSegments ) ); const thetaEnd = Math.min( thetaStart + thetaLength, Math.PI ); let index = 0; const grid = []; const vertex = new Vector3(); const normal = new Vector3(); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // generate vertices, normals and uvs for ( let iy = 0; iy <= heightSegments; iy ++ ) { const verticesRow = []; const v = iy / heightSegments; // special case for the poles let uOffset = 0; if ( iy == 0 && thetaStart == 0 ) { uOffset = 0.5 / widthSegments; } else if ( iy == heightSegments && thetaEnd == Math.PI ) { uOffset = - 0.5 / widthSegments; } for ( let ix = 0; ix <= widthSegments; ix ++ ) { const u = ix / widthSegments; // vertex vertex.x = - radius * Math.cos( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength ); vertex.y = radius * Math.cos( thetaStart + v * thetaLength ); vertex.z = radius * Math.sin( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength ); vertices.push( vertex.x, vertex.y, vertex.z ); // normal normal.copy( vertex ).normalize(); normals.push( normal.x, normal.y, normal.z ); // uv uvs.push( u + uOffset, 1 - v ); verticesRow.push( index ++ ); } grid.push( verticesRow ); } // indices for ( let iy = 0; iy < heightSegments; iy ++ ) { for ( let ix = 0; ix < widthSegments; ix ++ ) { const a = grid[ iy ][ ix + 1 ]; const b = grid[ iy ][ ix ]; const c = grid[ iy + 1 ][ ix ]; const d = grid[ iy + 1 ][ ix + 1 ]; if ( iy !== 0 || thetaStart > 0 ) indices.push( a, b, d ); if ( iy !== heightSegments - 1 || thetaEnd < Math.PI ) indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } static fromJSON( data ) { return new SphereGeometry( data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength ); } } class TetrahedronGeometry extends PolyhedronGeometry { constructor( radius = 1, detail = 0 ) { const vertices = [ 1, 1, 1, - 1, - 1, 1, - 1, 1, - 1, 1, - 1, - 1 ]; const indices = [ 2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1 ]; super( vertices, indices, radius, detail ); this.type = 'TetrahedronGeometry'; this.parameters = { radius: radius, detail: detail }; } static fromJSON( data ) { return new TetrahedronGeometry( data.radius, data.detail ); } } /** * Text = 3D Text * * parameters = { * font: , // font * * size: , // size of the text * height: , // thickness to extrude text * curveSegments: , // number of points on the curves * * bevelEnabled: , // turn on bevel * bevelThickness: , // how deep into text bevel goes * bevelSize: , // how far from text outline (including bevelOffset) is bevel * bevelOffset: // how far from text outline does bevel start * } */ class TextGeometry extends ExtrudeGeometry { constructor( text, parameters = {} ) { const font = parameters.font; if ( ! ( font && font.isFont ) ) { console.error( 'THREE.TextGeometry: font parameter is not an instance of THREE.Font.' ); return new BufferGeometry(); } const shapes = font.generateShapes( text, parameters.size ); // translate parameters to ExtrudeGeometry API parameters.depth = parameters.height !== undefined ? parameters.height : 50; // defaults if ( parameters.bevelThickness === undefined ) parameters.bevelThickness = 10; if ( parameters.bevelSize === undefined ) parameters.bevelSize = 8; if ( parameters.bevelEnabled === undefined ) parameters.bevelEnabled = false; super( shapes, parameters ); this.type = 'TextGeometry'; } } class TorusGeometry extends BufferGeometry { constructor( radius = 1, tube = 0.4, radialSegments = 8, tubularSegments = 6, arc = Math.PI * 2 ) { super(); this.type = 'TorusGeometry'; this.parameters = { radius: radius, tube: tube, radialSegments: radialSegments, tubularSegments: tubularSegments, arc: arc }; radialSegments = Math.floor( radialSegments ); tubularSegments = Math.floor( tubularSegments ); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // helper variables const center = new Vector3(); const vertex = new Vector3(); const normal = new Vector3(); // generate vertices, normals and uvs for ( let j = 0; j <= radialSegments; j ++ ) { for ( let i = 0; i <= tubularSegments; i ++ ) { const u = i / tubularSegments * arc; const v = j / radialSegments * Math.PI * 2; // vertex vertex.x = ( radius + tube * Math.cos( v ) ) * Math.cos( u ); vertex.y = ( radius + tube * Math.cos( v ) ) * Math.sin( u ); vertex.z = tube * Math.sin( v ); vertices.push( vertex.x, vertex.y, vertex.z ); // normal center.x = radius * Math.cos( u ); center.y = radius * Math.sin( u ); normal.subVectors( vertex, center ).normalize(); normals.push( normal.x, normal.y, normal.z ); // uv uvs.push( i / tubularSegments ); uvs.push( j / radialSegments ); } } // generate indices for ( let j = 1; j <= radialSegments; j ++ ) { for ( let i = 1; i <= tubularSegments; i ++ ) { // indices const a = ( tubularSegments + 1 ) * j + i - 1; const b = ( tubularSegments + 1 ) * ( j - 1 ) + i - 1; const c = ( tubularSegments + 1 ) * ( j - 1 ) + i; const d = ( tubularSegments + 1 ) * j + i; // faces indices.push( a, b, d ); indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } static fromJSON( data ) { return new TorusGeometry( data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc ); } } class TorusKnotGeometry extends BufferGeometry { constructor( radius = 1, tube = 0.4, tubularSegments = 64, radialSegments = 8, p = 2, q = 3 ) { super(); this.type = 'TorusKnotGeometry'; this.parameters = { radius: radius, tube: tube, tubularSegments: tubularSegments, radialSegments: radialSegments, p: p, q: q }; tubularSegments = Math.floor( tubularSegments ); radialSegments = Math.floor( radialSegments ); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // helper variables const vertex = new Vector3(); const normal = new Vector3(); const P1 = new Vector3(); const P2 = new Vector3(); const B = new Vector3(); const T = new Vector3(); const N = new Vector3(); // generate vertices, normals and uvs for ( let i = 0; i <= tubularSegments; ++ i ) { // the radian "u" is used to calculate the position on the torus curve of the current tubular segement const u = i / tubularSegments * p * Math.PI * 2; // now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead. // these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions calculatePositionOnCurve( u, p, q, radius, P1 ); calculatePositionOnCurve( u + 0.01, p, q, radius, P2 ); // calculate orthonormal basis T.subVectors( P2, P1 ); N.addVectors( P2, P1 ); B.crossVectors( T, N ); N.crossVectors( B, T ); // normalize B, N. T can be ignored, we don't use it B.normalize(); N.normalize(); for ( let j = 0; j <= radialSegments; ++ j ) { // now calculate the vertices. they are nothing more than an extrusion of the torus curve. // because we extrude a shape in the xy-plane, there is no need to calculate a z-value. const v = j / radialSegments * Math.PI * 2; const cx = - tube * Math.cos( v ); const cy = tube * Math.sin( v ); // now calculate the final vertex position. // first we orient the extrusion with our basis vectos, then we add it to the current position on the curve vertex.x = P1.x + ( cx * N.x + cy * B.x ); vertex.y = P1.y + ( cx * N.y + cy * B.y ); vertex.z = P1.z + ( cx * N.z + cy * B.z ); vertices.push( vertex.x, vertex.y, vertex.z ); // normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal) normal.subVectors( vertex, P1 ).normalize(); normals.push( normal.x, normal.y, normal.z ); // uv uvs.push( i / tubularSegments ); uvs.push( j / radialSegments ); } } // generate indices for ( let j = 1; j <= tubularSegments; j ++ ) { for ( let i = 1; i <= radialSegments; i ++ ) { // indices const a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 ); const b = ( radialSegments + 1 ) * j + ( i - 1 ); const c = ( radialSegments + 1 ) * j + i; const d = ( radialSegments + 1 ) * ( j - 1 ) + i; // faces indices.push( a, b, d ); indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); // this function calculates the current position on the torus curve function calculatePositionOnCurve( u, p, q, radius, position ) { const cu = Math.cos( u ); const su = Math.sin( u ); const quOverP = q / p * u; const cs = Math.cos( quOverP ); position.x = radius * ( 2 + cs ) * 0.5 * cu; position.y = radius * ( 2 + cs ) * su * 0.5; position.z = radius * Math.sin( quOverP ) * 0.5; } } static fromJSON( data ) { return new TorusKnotGeometry( data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q ); } } class TubeGeometry extends BufferGeometry { constructor( path, tubularSegments = 64, radius = 1, radialSegments = 8, closed = false ) { super(); this.type = 'TubeGeometry'; this.parameters = { path: path, tubularSegments: tubularSegments, radius: radius, radialSegments: radialSegments, closed: closed }; const frames = path.computeFrenetFrames( tubularSegments, closed ); // expose internals this.tangents = frames.tangents; this.normals = frames.normals; this.binormals = frames.binormals; // helper variables const vertex = new Vector3(); const normal = new Vector3(); const uv = new Vector2(); let P = new Vector3(); // buffer const vertices = []; const normals = []; const uvs = []; const indices = []; // create buffer data generateBufferData(); // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); // functions function generateBufferData() { for ( let i = 0; i < tubularSegments; i ++ ) { generateSegment( i ); } // if the geometry is not closed, generate the last row of vertices and normals // at the regular position on the given path // // if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ) generateSegment( ( closed === false ) ? tubularSegments : 0 ); // uvs are generated in a separate function. // this makes it easy compute correct values for closed geometries generateUVs(); // finally create faces generateIndices(); } function generateSegment( i ) { // we use getPointAt to sample evenly distributed points from the given path P = path.getPointAt( i / tubularSegments, P ); // retrieve corresponding normal and binormal const N = frames.normals[ i ]; const B = frames.binormals[ i ]; // generate normals and vertices for the current segment for ( let j = 0; j <= radialSegments; j ++ ) { const v = j / radialSegments * Math.PI * 2; const sin = Math.sin( v ); const cos = - Math.cos( v ); // normal normal.x = ( cos * N.x + sin * B.x ); normal.y = ( cos * N.y + sin * B.y ); normal.z = ( cos * N.z + sin * B.z ); normal.normalize(); normals.push( normal.x, normal.y, normal.z ); // vertex vertex.x = P.x + radius * normal.x; vertex.y = P.y + radius * normal.y; vertex.z = P.z + radius * normal.z; vertices.push( vertex.x, vertex.y, vertex.z ); } } function generateIndices() { for ( let j = 1; j <= tubularSegments; j ++ ) { for ( let i = 1; i <= radialSegments; i ++ ) { const a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 ); const b = ( radialSegments + 1 ) * j + ( i - 1 ); const c = ( radialSegments + 1 ) * j + i; const d = ( radialSegments + 1 ) * ( j - 1 ) + i; // faces indices.push( a, b, d ); indices.push( b, c, d ); } } } function generateUVs() { for ( let i = 0; i <= tubularSegments; i ++ ) { for ( let j = 0; j <= radialSegments; j ++ ) { uv.x = i / tubularSegments; uv.y = j / radialSegments; uvs.push( uv.x, uv.y ); } } } } toJSON() { const data = super.toJSON(); data.path = this.parameters.path.toJSON(); return data; } static fromJSON( data ) { // This only works for built-in curves (e.g. CatmullRomCurve3). // User defined curves or instances of CurvePath will not be deserialized. return new TubeGeometry( new Curves[ data.path.type ]().fromJSON( data.path ), data.tubularSegments, data.radius, data.radialSegments, data.closed ); } } class WireframeGeometry extends BufferGeometry { constructor( geometry ) { super(); this.type = 'WireframeGeometry'; if ( geometry.isGeometry === true ) { console.error( 'THREE.WireframeGeometry no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.' ); return; } // buffer const vertices = []; const edges = new Set(); // helper variables const start = new Vector3(); const end = new Vector3(); if ( geometry.index !== null ) { // indexed BufferGeometry const position = geometry.attributes.position; const indices = geometry.index; let groups = geometry.groups; if ( groups.length === 0 ) { groups = [ { start: 0, count: indices.count, materialIndex: 0 } ]; } // create a data structure that contains all eges without duplicates for ( let o = 0, ol = groups.length; o < ol; ++ o ) { const group = groups[ o ]; const groupStart = group.start; const groupCount = group.count; for ( let i = groupStart, l = ( groupStart + groupCount ); i < l; i += 3 ) { for ( let j = 0; j < 3; j ++ ) { const index1 = indices.getX( i + j ); const index2 = indices.getX( i + ( j + 1 ) % 3 ); start.fromBufferAttribute( position, index1 ); end.fromBufferAttribute( position, index2 ); if ( isUniqueEdge( start, end, edges ) === true ) { vertices.push( start.x, start.y, start.z ); vertices.push( end.x, end.y, end.z ); } } } } } else { // non-indexed BufferGeometry const position = geometry.attributes.position; for ( let i = 0, l = ( position.count / 3 ); i < l; i ++ ) { for ( let j = 0; j < 3; j ++ ) { // three edges per triangle, an edge is represented as (index1, index2) // e.g. the first triangle has the following edges: (0,1),(1,2),(2,0) const index1 = 3 * i + j; const index2 = 3 * i + ( ( j + 1 ) % 3 ); start.fromBufferAttribute( position, index1 ); end.fromBufferAttribute( position, index2 ); if ( isUniqueEdge( start, end, edges ) === true ) { vertices.push( start.x, start.y, start.z ); vertices.push( end.x, end.y, end.z ); } } } } // build geometry this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); } } function isUniqueEdge( start, end, edges ) { const hash1 = `${start.x},${start.y},${start.z}-${end.x},${end.y},${end.z}`; const hash2 = `${end.x},${end.y},${end.z}-${start.x},${start.y},${start.z}`; // coincident edge if ( edges.has( hash1 ) === true || edges.has( hash2 ) === true ) { return false; } else { edges.add( hash1, hash2 ); return true; } } var Geometries = /*#__PURE__*/Object.freeze({ __proto__: null, BoxGeometry: BoxGeometry, BoxBufferGeometry: BoxGeometry, CircleGeometry: CircleGeometry, CircleBufferGeometry: CircleGeometry, ConeGeometry: ConeGeometry, ConeBufferGeometry: ConeGeometry, CylinderGeometry: CylinderGeometry, CylinderBufferGeometry: CylinderGeometry, DodecahedronGeometry: DodecahedronGeometry, DodecahedronBufferGeometry: DodecahedronGeometry, EdgesGeometry: EdgesGeometry, ExtrudeGeometry: ExtrudeGeometry, ExtrudeBufferGeometry: ExtrudeGeometry, IcosahedronGeometry: IcosahedronGeometry, IcosahedronBufferGeometry: IcosahedronGeometry, LatheGeometry: LatheGeometry, LatheBufferGeometry: LatheGeometry, OctahedronGeometry: OctahedronGeometry, OctahedronBufferGeometry: OctahedronGeometry, ParametricGeometry: ParametricGeometry, ParametricBufferGeometry: ParametricGeometry, PlaneGeometry: PlaneGeometry, PlaneBufferGeometry: PlaneGeometry, PolyhedronGeometry: PolyhedronGeometry, PolyhedronBufferGeometry: PolyhedronGeometry, RingGeometry: RingGeometry, RingBufferGeometry: RingGeometry, ShapeGeometry: ShapeGeometry, ShapeBufferGeometry: ShapeGeometry, SphereGeometry: SphereGeometry, SphereBufferGeometry: SphereGeometry, TetrahedronGeometry: TetrahedronGeometry, TetrahedronBufferGeometry: TetrahedronGeometry, TextGeometry: TextGeometry, TextBufferGeometry: TextGeometry, TorusGeometry: TorusGeometry, TorusBufferGeometry: TorusGeometry, TorusKnotGeometry: TorusKnotGeometry, TorusKnotBufferGeometry: TorusKnotGeometry, TubeGeometry: TubeGeometry, TubeBufferGeometry: TubeGeometry, WireframeGeometry: WireframeGeometry }); /** * parameters = { * color: * } */ class ShadowMaterial extends Material { constructor( parameters ) { super(); this.type = 'ShadowMaterial'; this.color = new Color( 0x000000 ); this.transparent = true; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.color.copy( source.color ); return this; } } ShadowMaterial.prototype.isShadowMaterial = true; /** * parameters = { * color: , * roughness: , * metalness: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalMapType: THREE.TangentSpaceNormalMap, * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * roughnessMap: new THREE.Texture( ), * * metalnessMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), * envMapIntensity: * * refractionRatio: , * * wireframe: , * wireframeLinewidth: , * * flatShading: * } */ class MeshStandardMaterial extends Material { constructor( parameters ) { super(); this.defines = { 'STANDARD': '' }; this.type = 'MeshStandardMaterial'; this.color = new Color( 0xffffff ); // diffuse this.roughness = 1.0; this.metalness = 0.0; this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.roughnessMap = null; this.metalnessMap = null; this.alphaMap = null; this.envMap = null; this.envMapIntensity = 1.0; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.flatShading = false; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.defines = { 'STANDARD': '' }; this.color.copy( source.color ); this.roughness = source.roughness; this.metalness = source.metalness; this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.roughnessMap = source.roughnessMap; this.metalnessMap = source.metalnessMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.envMapIntensity = source.envMapIntensity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.flatShading = source.flatShading; return this; } } MeshStandardMaterial.prototype.isMeshStandardMaterial = true; /** * parameters = { * clearcoat: , * clearcoatMap: new THREE.Texture( ), * clearcoatRoughness: , * clearcoatRoughnessMap: new THREE.Texture( ), * clearcoatNormalScale: , * clearcoatNormalMap: new THREE.Texture( ), * * ior: , * reflectivity: , * * sheenTint: , * * transmission: , * transmissionMap: new THREE.Texture( ), * * thickness: , * thicknessMap: new THREE.Texture( ), * attenuationDistance: , * attenuationTint: , * * specularIntensity: , * specularIntensityhMap: new THREE.Texture( ), * specularTint: , * specularTintMap: new THREE.Texture( ) * } */ class MeshPhysicalMaterial extends MeshStandardMaterial { constructor( parameters ) { super(); this.defines = { 'STANDARD': '', 'PHYSICAL': '' }; this.type = 'MeshPhysicalMaterial'; this.clearcoatMap = null; this.clearcoatRoughness = 0.0; this.clearcoatRoughnessMap = null; this.clearcoatNormalScale = new Vector2( 1, 1 ); this.clearcoatNormalMap = null; this.ior = 1.5; Object.defineProperty( this, 'reflectivity', { get: function () { return ( clamp( 2.5 * ( this.ior - 1 ) / ( this.ior + 1 ), 0, 1 ) ); }, set: function ( reflectivity ) { this.ior = ( 1 + 0.4 * reflectivity ) / ( 1 - 0.4 * reflectivity ); } } ); this.sheenTint = new Color( 0x000000 ); this.transmission = 0.0; this.transmissionMap = null; this.thickness = 0.01; this.thicknessMap = null; this.attenuationDistance = 0.0; this.attenuationTint = new Color( 1, 1, 1 ); this.specularIntensity = 1.0; this.specularIntensityMap = null; this.specularTint = new Color( 1, 1, 1 ); this.specularTintMap = null; this._clearcoat = 0; this._transmission = 0; this.setValues( parameters ); } get clearcoat() { return this._clearcoat; } set clearcoat( value ) { if ( this._clearcoat > 0 !== value > 0 ) { this.version ++; } this._clearcoat = value; } get transmission() { return this._transmission; } set transmission( value ) { if ( this._transmission > 0 !== value > 0 ) { this.version ++; } this._transmission = value; } copy( source ) { super.copy( source ); this.defines = { 'STANDARD': '', 'PHYSICAL': '' }; this.clearcoat = source.clearcoat; this.clearcoatMap = source.clearcoatMap; this.clearcoatRoughness = source.clearcoatRoughness; this.clearcoatRoughnessMap = source.clearcoatRoughnessMap; this.clearcoatNormalMap = source.clearcoatNormalMap; this.clearcoatNormalScale.copy( source.clearcoatNormalScale ); this.ior = source.ior; this.sheenTint.copy( source.sheenTint ); this.transmission = source.transmission; this.transmissionMap = source.transmissionMap; this.thickness = source.thickness; this.thicknessMap = source.thicknessMap; this.attenuationDistance = source.attenuationDistance; this.attenuationTint.copy( source.attenuationTint ); this.specularIntensity = source.specularIntensity; this.specularIntensityMap = source.specularIntensityMap; this.specularTint.copy( source.specularTint ); this.specularTintMap = source.specularTintMap; return this; } } MeshPhysicalMaterial.prototype.isMeshPhysicalMaterial = true; /** * parameters = { * color: , * specular: , * shininess: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalMapType: THREE.TangentSpaceNormalMap, * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.MultiplyOperation, * reflectivity: , * refractionRatio: , * * wireframe: , * wireframeLinewidth: , * * flatShading: * } */ class MeshPhongMaterial extends Material { constructor( parameters ) { super(); this.type = 'MeshPhongMaterial'; this.color = new Color( 0xffffff ); // diffuse this.specular = new Color( 0x111111 ); this.shininess = 30; this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.flatShading = false; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.color.copy( source.color ); this.specular.copy( source.specular ); this.shininess = source.shininess; this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.flatShading = source.flatShading; return this; } } MeshPhongMaterial.prototype.isMeshPhongMaterial = true; /** * parameters = { * color: , * * map: new THREE.Texture( ), * gradientMap: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalMapType: THREE.TangentSpaceNormalMap, * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * alphaMap: new THREE.Texture( ), * * wireframe: , * wireframeLinewidth: , * * } */ class MeshToonMaterial extends Material { constructor( parameters ) { super(); this.defines = { 'TOON': '' }; this.type = 'MeshToonMaterial'; this.color = new Color( 0xffffff ); this.map = null; this.gradientMap = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.alphaMap = null; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.color.copy( source.color ); this.map = source.map; this.gradientMap = source.gradientMap; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.alphaMap = source.alphaMap; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; return this; } } MeshToonMaterial.prototype.isMeshToonMaterial = true; /** * parameters = { * opacity: , * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalMapType: THREE.TangentSpaceNormalMap, * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * wireframe: , * wireframeLinewidth: * * flatShading: * } */ class MeshNormalMaterial extends Material { constructor( parameters ) { super(); this.type = 'MeshNormalMaterial'; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.wireframe = false; this.wireframeLinewidth = 1; this.fog = false; this.flatShading = false; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.flatShading = source.flatShading; return this; } } MeshNormalMaterial.prototype.isMeshNormalMaterial = true; /** * parameters = { * color: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * wireframe: , * wireframeLinewidth: , * * } */ class MeshLambertMaterial extends Material { constructor( parameters ) { super(); this.type = 'MeshLambertMaterial'; this.color = new Color( 0xffffff ); // diffuse this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.color.copy( source.color ); this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; return this; } } MeshLambertMaterial.prototype.isMeshLambertMaterial = true; /** * parameters = { * color: , * opacity: , * * matcap: new THREE.Texture( ), * * map: new THREE.Texture( ), * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalMapType: THREE.TangentSpaceNormalMap, * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * alphaMap: new THREE.Texture( ), * * flatShading: * } */ class MeshMatcapMaterial extends Material { constructor( parameters ) { super(); this.defines = { 'MATCAP': '' }; this.type = 'MeshMatcapMaterial'; this.color = new Color( 0xffffff ); // diffuse this.matcap = null; this.map = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.alphaMap = null; this.flatShading = false; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.defines = { 'MATCAP': '' }; this.color.copy( source.color ); this.matcap = source.matcap; this.map = source.map; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.alphaMap = source.alphaMap; this.flatShading = source.flatShading; return this; } } MeshMatcapMaterial.prototype.isMeshMatcapMaterial = true; /** * parameters = { * color: , * opacity: , * * linewidth: , * * scale: , * dashSize: , * gapSize: * } */ class LineDashedMaterial extends LineBasicMaterial { constructor( parameters ) { super(); this.type = 'LineDashedMaterial'; this.scale = 1; this.dashSize = 3; this.gapSize = 1; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.scale = source.scale; this.dashSize = source.dashSize; this.gapSize = source.gapSize; return this; } } LineDashedMaterial.prototype.isLineDashedMaterial = true; var Materials = /*#__PURE__*/Object.freeze({ __proto__: null, ShadowMaterial: ShadowMaterial, SpriteMaterial: SpriteMaterial, RawShaderMaterial: RawShaderMaterial, ShaderMaterial: ShaderMaterial, PointsMaterial: PointsMaterial, MeshPhysicalMaterial: MeshPhysicalMaterial, MeshStandardMaterial: MeshStandardMaterial, MeshPhongMaterial: MeshPhongMaterial, MeshToonMaterial: MeshToonMaterial, MeshNormalMaterial: MeshNormalMaterial, MeshLambertMaterial: MeshLambertMaterial, MeshDepthMaterial: MeshDepthMaterial, MeshDistanceMaterial: MeshDistanceMaterial, MeshBasicMaterial: MeshBasicMaterial, MeshMatcapMaterial: MeshMatcapMaterial, LineDashedMaterial: LineDashedMaterial, LineBasicMaterial: LineBasicMaterial, Material: Material }); const AnimationUtils = { // same as Array.prototype.slice, but also works on typed arrays arraySlice: function ( array, from, to ) { if ( AnimationUtils.isTypedArray( array ) ) { // in ios9 array.subarray(from, undefined) will return empty array // but array.subarray(from) or array.subarray(from, len) is correct return new array.constructor( array.subarray( from, to !== undefined ? to : array.length ) ); } return array.slice( from, to ); }, // converts an array to a specific type convertArray: function ( array, type, forceClone ) { if ( ! array || // let 'undefined' and 'null' pass ! forceClone && array.constructor === type ) return array; if ( typeof type.BYTES_PER_ELEMENT === 'number' ) { return new type( array ); // create typed array } return Array.prototype.slice.call( array ); // create Array }, isTypedArray: function ( object ) { return ArrayBuffer.isView( object ) && ! ( object instanceof DataView ); }, // returns an array by which times and values can be sorted getKeyframeOrder: function ( times ) { function compareTime( i, j ) { return times[ i ] - times[ j ]; } const n = times.length; const result = new Array( n ); for ( let i = 0; i !== n; ++ i ) result[ i ] = i; result.sort( compareTime ); return result; }, // uses the array previously returned by 'getKeyframeOrder' to sort data sortedArray: function ( values, stride, order ) { const nValues = values.length; const result = new values.constructor( nValues ); for ( let i = 0, dstOffset = 0; dstOffset !== nValues; ++ i ) { const srcOffset = order[ i ] * stride; for ( let j = 0; j !== stride; ++ j ) { result[ dstOffset ++ ] = values[ srcOffset + j ]; } } return result; }, // function for parsing AOS keyframe formats flattenJSON: function ( jsonKeys, times, values, valuePropertyName ) { let i = 1, key = jsonKeys[ 0 ]; while ( key !== undefined && key[ valuePropertyName ] === undefined ) { key = jsonKeys[ i ++ ]; } if ( key === undefined ) return; // no data let value = key[ valuePropertyName ]; if ( value === undefined ) return; // no data if ( Array.isArray( value ) ) { do { value = key[ valuePropertyName ]; if ( value !== undefined ) { times.push( key.time ); values.push.apply( values, value ); // push all elements } key = jsonKeys[ i ++ ]; } while ( key !== undefined ); } else if ( value.toArray !== undefined ) { // ...assume THREE.Math-ish do { value = key[ valuePropertyName ]; if ( value !== undefined ) { times.push( key.time ); value.toArray( values, values.length ); } key = jsonKeys[ i ++ ]; } while ( key !== undefined ); } else { // otherwise push as-is do { value = key[ valuePropertyName ]; if ( value !== undefined ) { times.push( key.time ); values.push( value ); } key = jsonKeys[ i ++ ]; } while ( key !== undefined ); } }, subclip: function ( sourceClip, name, startFrame, endFrame, fps = 30 ) { const clip = sourceClip.clone(); clip.name = name; const tracks = []; for ( let i = 0; i < clip.tracks.length; ++ i ) { const track = clip.tracks[ i ]; const valueSize = track.getValueSize(); const times = []; const values = []; for ( let j = 0; j < track.times.length; ++ j ) { const frame = track.times[ j ] * fps; if ( frame < startFrame || frame >= endFrame ) continue; times.push( track.times[ j ] ); for ( let k = 0; k < valueSize; ++ k ) { values.push( track.values[ j * valueSize + k ] ); } } if ( times.length === 0 ) continue; track.times = AnimationUtils.convertArray( times, track.times.constructor ); track.values = AnimationUtils.convertArray( values, track.values.constructor ); tracks.push( track ); } clip.tracks = tracks; // find minimum .times value across all tracks in the trimmed clip let minStartTime = Infinity; for ( let i = 0; i < clip.tracks.length; ++ i ) { if ( minStartTime > clip.tracks[ i ].times[ 0 ] ) { minStartTime = clip.tracks[ i ].times[ 0 ]; } } // shift all tracks such that clip begins at t=0 for ( let i = 0; i < clip.tracks.length; ++ i ) { clip.tracks[ i ].shift( - 1 * minStartTime ); } clip.resetDuration(); return clip; }, makeClipAdditive: function ( targetClip, referenceFrame = 0, referenceClip = targetClip, fps = 30 ) { if ( fps <= 0 ) fps = 30; const numTracks = referenceClip.tracks.length; const referenceTime = referenceFrame / fps; // Make each track's values relative to the values at the reference frame for ( let i = 0; i < numTracks; ++ i ) { const referenceTrack = referenceClip.tracks[ i ]; const referenceTrackType = referenceTrack.ValueTypeName; // Skip this track if it's non-numeric if ( referenceTrackType === 'bool' || referenceTrackType === 'string' ) continue; // Find the track in the target clip whose name and type matches the reference track const targetTrack = targetClip.tracks.find( function ( track ) { return track.name === referenceTrack.name && track.ValueTypeName === referenceTrackType; } ); if ( targetTrack === undefined ) continue; let referenceOffset = 0; const referenceValueSize = referenceTrack.getValueSize(); if ( referenceTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline ) { referenceOffset = referenceValueSize / 3; } let targetOffset = 0; const targetValueSize = targetTrack.getValueSize(); if ( targetTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline ) { targetOffset = targetValueSize / 3; } const lastIndex = referenceTrack.times.length - 1; let referenceValue; // Find the value to subtract out of the track if ( referenceTime <= referenceTrack.times[ 0 ] ) { // Reference frame is earlier than the first keyframe, so just use the first keyframe const startIndex = referenceOffset; const endIndex = referenceValueSize - referenceOffset; referenceValue = AnimationUtils.arraySlice( referenceTrack.values, startIndex, endIndex ); } else if ( referenceTime >= referenceTrack.times[ lastIndex ] ) { // Reference frame is after the last keyframe, so just use the last keyframe const startIndex = lastIndex * referenceValueSize + referenceOffset; const endIndex = startIndex + referenceValueSize - referenceOffset; referenceValue = AnimationUtils.arraySlice( referenceTrack.values, startIndex, endIndex ); } else { // Interpolate to the reference value const interpolant = referenceTrack.createInterpolant(); const startIndex = referenceOffset; const endIndex = referenceValueSize - referenceOffset; interpolant.evaluate( referenceTime ); referenceValue = AnimationUtils.arraySlice( interpolant.resultBuffer, startIndex, endIndex ); } // Conjugate the quaternion if ( referenceTrackType === 'quaternion' ) { const referenceQuat = new Quaternion().fromArray( referenceValue ).normalize().conjugate(); referenceQuat.toArray( referenceValue ); } // Subtract the reference value from all of the track values const numTimes = targetTrack.times.length; for ( let j = 0; j < numTimes; ++ j ) { const valueStart = j * targetValueSize + targetOffset; if ( referenceTrackType === 'quaternion' ) { // Multiply the conjugate for quaternion track types Quaternion.multiplyQuaternionsFlat( targetTrack.values, valueStart, referenceValue, 0, targetTrack.values, valueStart ); } else { const valueEnd = targetValueSize - targetOffset * 2; // Subtract each value for all other numeric track types for ( let k = 0; k < valueEnd; ++ k ) { targetTrack.values[ valueStart + k ] -= referenceValue[ k ]; } } } } targetClip.blendMode = AdditiveAnimationBlendMode; return targetClip; } }; /** * Abstract base class of interpolants over parametric samples. * * The parameter domain is one dimensional, typically the time or a path * along a curve defined by the data. * * The sample values can have any dimensionality and derived classes may * apply special interpretations to the data. * * This class provides the interval seek in a Template Method, deferring * the actual interpolation to derived classes. * * Time complexity is O(1) for linear access crossing at most two points * and O(log N) for random access, where N is the number of positions. * * References: * * http://www.oodesign.com/template-method-pattern.html * */ class Interpolant { constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) { this.parameterPositions = parameterPositions; this._cachedIndex = 0; this.resultBuffer = resultBuffer !== undefined ? resultBuffer : new sampleValues.constructor( sampleSize ); this.sampleValues = sampleValues; this.valueSize = sampleSize; this.settings = null; this.DefaultSettings_ = {}; } evaluate( t ) { const pp = this.parameterPositions; let i1 = this._cachedIndex, t1 = pp[ i1 ], t0 = pp[ i1 - 1 ]; validate_interval: { seek: { let right; linear_scan: { //- See http://jsperf.com/comparison-to-undefined/3 //- slower code: //- //- if ( t >= t1 || t1 === undefined ) { forward_scan: if ( ! ( t < t1 ) ) { for ( let giveUpAt = i1 + 2; ; ) { if ( t1 === undefined ) { if ( t < t0 ) break forward_scan; // after end i1 = pp.length; this._cachedIndex = i1; return this.afterEnd_( i1 - 1, t, t0 ); } if ( i1 === giveUpAt ) break; // this loop t0 = t1; t1 = pp[ ++ i1 ]; if ( t < t1 ) { // we have arrived at the sought interval break seek; } } // prepare binary search on the right side of the index right = pp.length; break linear_scan; } //- slower code: //- if ( t < t0 || t0 === undefined ) { if ( ! ( t >= t0 ) ) { // looping? const t1global = pp[ 1 ]; if ( t < t1global ) { i1 = 2; // + 1, using the scan for the details t0 = t1global; } // linear reverse scan for ( let giveUpAt = i1 - 2; ; ) { if ( t0 === undefined ) { // before start this._cachedIndex = 0; return this.beforeStart_( 0, t, t1 ); } if ( i1 === giveUpAt ) break; // this loop t1 = t0; t0 = pp[ -- i1 - 1 ]; if ( t >= t0 ) { // we have arrived at the sought interval break seek; } } // prepare binary search on the left side of the index right = i1; i1 = 0; break linear_scan; } // the interval is valid break validate_interval; } // linear scan // binary search while ( i1 < right ) { const mid = ( i1 + right ) >>> 1; if ( t < pp[ mid ] ) { right = mid; } else { i1 = mid + 1; } } t1 = pp[ i1 ]; t0 = pp[ i1 - 1 ]; // check boundary cases, again if ( t0 === undefined ) { this._cachedIndex = 0; return this.beforeStart_( 0, t, t1 ); } if ( t1 === undefined ) { i1 = pp.length; this._cachedIndex = i1; return this.afterEnd_( i1 - 1, t0, t ); } } // seek this._cachedIndex = i1; this.intervalChanged_( i1, t0, t1 ); } // validate_interval return this.interpolate_( i1, t0, t, t1 ); } getSettings_() { return this.settings || this.DefaultSettings_; } copySampleValue_( index ) { // copies a sample value to the result buffer const result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset = index * stride; for ( let i = 0; i !== stride; ++ i ) { result[ i ] = values[ offset + i ]; } return result; } // Template methods for derived classes: interpolate_( /* i1, t0, t, t1 */ ) { throw new Error( 'call to abstract method' ); // implementations shall return this.resultBuffer } intervalChanged_( /* i1, t0, t1 */ ) { // empty } } // ALIAS DEFINITIONS Interpolant.prototype.beforeStart_ = Interpolant.prototype.copySampleValue_; Interpolant.prototype.afterEnd_ = Interpolant.prototype.copySampleValue_; /** * Fast and simple cubic spline interpolant. * * It was derived from a Hermitian construction setting the first derivative * at each sample position to the linear slope between neighboring positions * over their parameter interval. */ class CubicInterpolant extends Interpolant { constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) { super( parameterPositions, sampleValues, sampleSize, resultBuffer ); this._weightPrev = - 0; this._offsetPrev = - 0; this._weightNext = - 0; this._offsetNext = - 0; this.DefaultSettings_ = { endingStart: ZeroCurvatureEnding, endingEnd: ZeroCurvatureEnding }; } intervalChanged_( i1, t0, t1 ) { const pp = this.parameterPositions; let iPrev = i1 - 2, iNext = i1 + 1, tPrev = pp[ iPrev ], tNext = pp[ iNext ]; if ( tPrev === undefined ) { switch ( this.getSettings_().endingStart ) { case ZeroSlopeEnding: // f'(t0) = 0 iPrev = i1; tPrev = 2 * t0 - t1; break; case WrapAroundEnding: // use the other end of the curve iPrev = pp.length - 2; tPrev = t0 + pp[ iPrev ] - pp[ iPrev + 1 ]; break; default: // ZeroCurvatureEnding // f''(t0) = 0 a.k.a. Natural Spline iPrev = i1; tPrev = t1; } } if ( tNext === undefined ) { switch ( this.getSettings_().endingEnd ) { case ZeroSlopeEnding: // f'(tN) = 0 iNext = i1; tNext = 2 * t1 - t0; break; case WrapAroundEnding: // use the other end of the curve iNext = 1; tNext = t1 + pp[ 1 ] - pp[ 0 ]; break; default: // ZeroCurvatureEnding // f''(tN) = 0, a.k.a. Natural Spline iNext = i1 - 1; tNext = t0; } } const halfDt = ( t1 - t0 ) * 0.5, stride = this.valueSize; this._weightPrev = halfDt / ( t0 - tPrev ); this._weightNext = halfDt / ( tNext - t1 ); this._offsetPrev = iPrev * stride; this._offsetNext = iNext * stride; } interpolate_( i1, t0, t, t1 ) { const result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, o1 = i1 * stride, o0 = o1 - stride, oP = this._offsetPrev, oN = this._offsetNext, wP = this._weightPrev, wN = this._weightNext, p = ( t - t0 ) / ( t1 - t0 ), pp = p * p, ppp = pp * p; // evaluate polynomials const sP = - wP * ppp + 2 * wP * pp - wP * p; const s0 = ( 1 + wP ) * ppp + ( - 1.5 - 2 * wP ) * pp + ( - 0.5 + wP ) * p + 1; const s1 = ( - 1 - wN ) * ppp + ( 1.5 + wN ) * pp + 0.5 * p; const sN = wN * ppp - wN * pp; // combine data linearly for ( let i = 0; i !== stride; ++ i ) { result[ i ] = sP * values[ oP + i ] + s0 * values[ o0 + i ] + s1 * values[ o1 + i ] + sN * values[ oN + i ]; } return result; } } class LinearInterpolant extends Interpolant { constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) { super( parameterPositions, sampleValues, sampleSize, resultBuffer ); } interpolate_( i1, t0, t, t1 ) { const result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset1 = i1 * stride, offset0 = offset1 - stride, weight1 = ( t - t0 ) / ( t1 - t0 ), weight0 = 1 - weight1; for ( let i = 0; i !== stride; ++ i ) { result[ i ] = values[ offset0 + i ] * weight0 + values[ offset1 + i ] * weight1; } return result; } } /** * * Interpolant that evaluates to the sample value at the position preceeding * the parameter. */ class DiscreteInterpolant extends Interpolant { constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) { super( parameterPositions, sampleValues, sampleSize, resultBuffer ); } interpolate_( i1 /*, t0, t, t1 */ ) { return this.copySampleValue_( i1 - 1 ); } } class KeyframeTrack { constructor( name, times, values, interpolation ) { if ( name === undefined ) throw new Error( 'THREE.KeyframeTrack: track name is undefined' ); if ( times === undefined || times.length === 0 ) throw new Error( 'THREE.KeyframeTrack: no keyframes in track named ' + name ); this.name = name; this.times = AnimationUtils.convertArray( times, this.TimeBufferType ); this.values = AnimationUtils.convertArray( values, this.ValueBufferType ); this.setInterpolation( interpolation || this.DefaultInterpolation ); } // Serialization (in static context, because of constructor invocation // and automatic invocation of .toJSON): static toJSON( track ) { const trackType = track.constructor; let json; // derived classes can define a static toJSON method if ( trackType.toJSON !== this.toJSON ) { json = trackType.toJSON( track ); } else { // by default, we assume the data can be serialized as-is json = { 'name': track.name, 'times': AnimationUtils.convertArray( track.times, Array ), 'values': AnimationUtils.convertArray( track.values, Array ) }; const interpolation = track.getInterpolation(); if ( interpolation !== track.DefaultInterpolation ) { json.interpolation = interpolation; } } json.type = track.ValueTypeName; // mandatory return json; } InterpolantFactoryMethodDiscrete( result ) { return new DiscreteInterpolant( this.times, this.values, this.getValueSize(), result ); } InterpolantFactoryMethodLinear( result ) { return new LinearInterpolant( this.times, this.values, this.getValueSize(), result ); } InterpolantFactoryMethodSmooth( result ) { return new CubicInterpolant( this.times, this.values, this.getValueSize(), result ); } setInterpolation( interpolation ) { let factoryMethod; switch ( interpolation ) { case InterpolateDiscrete: factoryMethod = this.InterpolantFactoryMethodDiscrete; break; case InterpolateLinear: factoryMethod = this.InterpolantFactoryMethodLinear; break; case InterpolateSmooth: factoryMethod = this.InterpolantFactoryMethodSmooth; break; } if ( factoryMethod === undefined ) { const message = 'unsupported interpolation for ' + this.ValueTypeName + ' keyframe track named ' + this.name; if ( this.createInterpolant === undefined ) { // fall back to default, unless the default itself is messed up if ( interpolation !== this.DefaultInterpolation ) { this.setInterpolation( this.DefaultInterpolation ); } else { throw new Error( message ); // fatal, in this case } } console.warn( 'THREE.KeyframeTrack:', message ); return this; } this.createInterpolant = factoryMethod; return this; } getInterpolation() { switch ( this.createInterpolant ) { case this.InterpolantFactoryMethodDiscrete: return InterpolateDiscrete; case this.InterpolantFactoryMethodLinear: return InterpolateLinear; case this.InterpolantFactoryMethodSmooth: return InterpolateSmooth; } } getValueSize() { return this.values.length / this.times.length; } // move all keyframes either forwards or backwards in time shift( timeOffset ) { if ( timeOffset !== 0.0 ) { const times = this.times; for ( let i = 0, n = times.length; i !== n; ++ i ) { times[ i ] += timeOffset; } } return this; } // scale all keyframe times by a factor (useful for frame <-> seconds conversions) scale( timeScale ) { if ( timeScale !== 1.0 ) { const times = this.times; for ( let i = 0, n = times.length; i !== n; ++ i ) { times[ i ] *= timeScale; } } return this; } // removes keyframes before and after animation without changing any values within the range [startTime, endTime]. // IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values trim( startTime, endTime ) { const times = this.times, nKeys = times.length; let from = 0, to = nKeys - 1; while ( from !== nKeys && times[ from ] < startTime ) { ++ from; } while ( to !== - 1 && times[ to ] > endTime ) { -- to; } ++ to; // inclusive -> exclusive bound if ( from !== 0 || to !== nKeys ) { // empty tracks are forbidden, so keep at least one keyframe if ( from >= to ) { to = Math.max( to, 1 ); from = to - 1; } const stride = this.getValueSize(); this.times = AnimationUtils.arraySlice( times, from, to ); this.values = AnimationUtils.arraySlice( this.values, from * stride, to * stride ); } return this; } // ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable validate() { let valid = true; const valueSize = this.getValueSize(); if ( valueSize - Math.floor( valueSize ) !== 0 ) { console.error( 'THREE.KeyframeTrack: Invalid value size in track.', this ); valid = false; } const times = this.times, values = this.values, nKeys = times.length; if ( nKeys === 0 ) { console.error( 'THREE.KeyframeTrack: Track is empty.', this ); valid = false; } let prevTime = null; for ( let i = 0; i !== nKeys; i ++ ) { const currTime = times[ i ]; if ( typeof currTime === 'number' && isNaN( currTime ) ) { console.error( 'THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime ); valid = false; break; } if ( prevTime !== null && prevTime > currTime ) { console.error( 'THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime ); valid = false; break; } prevTime = currTime; } if ( values !== undefined ) { if ( AnimationUtils.isTypedArray( values ) ) { for ( let i = 0, n = values.length; i !== n; ++ i ) { const value = values[ i ]; if ( isNaN( value ) ) { console.error( 'THREE.KeyframeTrack: Value is not a valid number.', this, i, value ); valid = false; break; } } } } return valid; } // removes equivalent sequential keys as common in morph target sequences // (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0) optimize() { // times or values may be shared with other tracks, so overwriting is unsafe const times = AnimationUtils.arraySlice( this.times ), values = AnimationUtils.arraySlice( this.values ), stride = this.getValueSize(), smoothInterpolation = this.getInterpolation() === InterpolateSmooth, lastIndex = times.length - 1; let writeIndex = 1; for ( let i = 1; i < lastIndex; ++ i ) { let keep = false; const time = times[ i ]; const timeNext = times[ i + 1 ]; // remove adjacent keyframes scheduled at the same time if ( time !== timeNext && ( i !== 1 || time !== times[ 0 ] ) ) { if ( ! smoothInterpolation ) { // remove unnecessary keyframes same as their neighbors const offset = i * stride, offsetP = offset - stride, offsetN = offset + stride; for ( let j = 0; j !== stride; ++ j ) { const value = values[ offset + j ]; if ( value !== values[ offsetP + j ] || value !== values[ offsetN + j ] ) { keep = true; break; } } } else { keep = true; } } // in-place compaction if ( keep ) { if ( i !== writeIndex ) { times[ writeIndex ] = times[ i ]; const readOffset = i * stride, writeOffset = writeIndex * stride; for ( let j = 0; j !== stride; ++ j ) { values[ writeOffset + j ] = values[ readOffset + j ]; } } ++ writeIndex; } } // flush last keyframe (compaction looks ahead) if ( lastIndex > 0 ) { times[ writeIndex ] = times[ lastIndex ]; for ( let readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++ j ) { values[ writeOffset + j ] = values[ readOffset + j ]; } ++ writeIndex; } if ( writeIndex !== times.length ) { this.times = AnimationUtils.arraySlice( times, 0, writeIndex ); this.values = AnimationUtils.arraySlice( values, 0, writeIndex * stride ); } else { this.times = times; this.values = values; } return this; } clone() { const times = AnimationUtils.arraySlice( this.times, 0 ); const values = AnimationUtils.arraySlice( this.values, 0 ); const TypedKeyframeTrack = this.constructor; const track = new TypedKeyframeTrack( this.name, times, values ); // Interpolant argument to constructor is not saved, so copy the factory method directly. track.createInterpolant = this.createInterpolant; return track; } } KeyframeTrack.prototype.TimeBufferType = Float32Array; KeyframeTrack.prototype.ValueBufferType = Float32Array; KeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear; /** * A Track of Boolean keyframe values. */ class BooleanKeyframeTrack extends KeyframeTrack {} BooleanKeyframeTrack.prototype.ValueTypeName = 'bool'; BooleanKeyframeTrack.prototype.ValueBufferType = Array; BooleanKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete; BooleanKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined; BooleanKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; /** * A Track of keyframe values that represent color. */ class ColorKeyframeTrack extends KeyframeTrack {} ColorKeyframeTrack.prototype.ValueTypeName = 'color'; /** * A Track of numeric keyframe values. */ class NumberKeyframeTrack extends KeyframeTrack {} NumberKeyframeTrack.prototype.ValueTypeName = 'number'; /** * Spherical linear unit quaternion interpolant. */ class QuaternionLinearInterpolant extends Interpolant { constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) { super( parameterPositions, sampleValues, sampleSize, resultBuffer ); } interpolate_( i1, t0, t, t1 ) { const result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, alpha = ( t - t0 ) / ( t1 - t0 ); let offset = i1 * stride; for ( let end = offset + stride; offset !== end; offset += 4 ) { Quaternion.slerpFlat( result, 0, values, offset - stride, values, offset, alpha ); } return result; } } /** * A Track of quaternion keyframe values. */ class QuaternionKeyframeTrack extends KeyframeTrack { InterpolantFactoryMethodLinear( result ) { return new QuaternionLinearInterpolant( this.times, this.values, this.getValueSize(), result ); } } QuaternionKeyframeTrack.prototype.ValueTypeName = 'quaternion'; // ValueBufferType is inherited QuaternionKeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear; QuaternionKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; /** * A Track that interpolates Strings */ class StringKeyframeTrack extends KeyframeTrack {} StringKeyframeTrack.prototype.ValueTypeName = 'string'; StringKeyframeTrack.prototype.ValueBufferType = Array; StringKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete; StringKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined; StringKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; /** * A Track of vectored keyframe values. */ class VectorKeyframeTrack extends KeyframeTrack {} VectorKeyframeTrack.prototype.ValueTypeName = 'vector'; class AnimationClip { constructor( name, duration = - 1, tracks, blendMode = NormalAnimationBlendMode ) { this.name = name; this.tracks = tracks; this.duration = duration; this.blendMode = blendMode; this.uuid = generateUUID(); // this means it should figure out its duration by scanning the tracks if ( this.duration < 0 ) { this.resetDuration(); } } static parse( json ) { const tracks = [], jsonTracks = json.tracks, frameTime = 1.0 / ( json.fps || 1.0 ); for ( let i = 0, n = jsonTracks.length; i !== n; ++ i ) { tracks.push( parseKeyframeTrack( jsonTracks[ i ] ).scale( frameTime ) ); } const clip = new this( json.name, json.duration, tracks, json.blendMode ); clip.uuid = json.uuid; return clip; } static toJSON( clip ) { const tracks = [], clipTracks = clip.tracks; const json = { 'name': clip.name, 'duration': clip.duration, 'tracks': tracks, 'uuid': clip.uuid, 'blendMode': clip.blendMode }; for ( let i = 0, n = clipTracks.length; i !== n; ++ i ) { tracks.push( KeyframeTrack.toJSON( clipTracks[ i ] ) ); } return json; } static CreateFromMorphTargetSequence( name, morphTargetSequence, fps, noLoop ) { const numMorphTargets = morphTargetSequence.length; const tracks = []; for ( let i = 0; i < numMorphTargets; i ++ ) { let times = []; let values = []; times.push( ( i + numMorphTargets - 1 ) % numMorphTargets, i, ( i + 1 ) % numMorphTargets ); values.push( 0, 1, 0 ); const order = AnimationUtils.getKeyframeOrder( times ); times = AnimationUtils.sortedArray( times, 1, order ); values = AnimationUtils.sortedArray( values, 1, order ); // if there is a key at the first frame, duplicate it as the // last frame as well for perfect loop. if ( ! noLoop && times[ 0 ] === 0 ) { times.push( numMorphTargets ); values.push( values[ 0 ] ); } tracks.push( new NumberKeyframeTrack( '.morphTargetInfluences[' + morphTargetSequence[ i ].name + ']', times, values ).scale( 1.0 / fps ) ); } return new this( name, - 1, tracks ); } static findByName( objectOrClipArray, name ) { let clipArray = objectOrClipArray; if ( ! Array.isArray( objectOrClipArray ) ) { const o = objectOrClipArray; clipArray = o.geometry && o.geometry.animations || o.animations; } for ( let i = 0; i < clipArray.length; i ++ ) { if ( clipArray[ i ].name === name ) { return clipArray[ i ]; } } return null; } static CreateClipsFromMorphTargetSequences( morphTargets, fps, noLoop ) { const animationToMorphTargets = {}; // tested with https://regex101.com/ on trick sequences // such flamingo_flyA_003, flamingo_run1_003, crdeath0059 const pattern = /^([\w-]*?)([\d]+)$/; // sort morph target names into animation groups based // patterns like Walk_001, Walk_002, Run_001, Run_002 for ( let i = 0, il = morphTargets.length; i < il; i ++ ) { const morphTarget = morphTargets[ i ]; const parts = morphTarget.name.match( pattern ); if ( parts && parts.length > 1 ) { const name = parts[ 1 ]; let animationMorphTargets = animationToMorphTargets[ name ]; if ( ! animationMorphTargets ) { animationToMorphTargets[ name ] = animationMorphTargets = []; } animationMorphTargets.push( morphTarget ); } } const clips = []; for ( const name in animationToMorphTargets ) { clips.push( this.CreateFromMorphTargetSequence( name, animationToMorphTargets[ name ], fps, noLoop ) ); } return clips; } // parse the animation.hierarchy format static parseAnimation( animation, bones ) { if ( ! animation ) { console.error( 'THREE.AnimationClip: No animation in JSONLoader data.' ); return null; } const addNonemptyTrack = function ( trackType, trackName, animationKeys, propertyName, destTracks ) { // only return track if there are actually keys. if ( animationKeys.length !== 0 ) { const times = []; const values = []; AnimationUtils.flattenJSON( animationKeys, times, values, propertyName ); // empty keys are filtered out, so check again if ( times.length !== 0 ) { destTracks.push( new trackType( trackName, times, values ) ); } } }; const tracks = []; const clipName = animation.name || 'default'; const fps = animation.fps || 30; const blendMode = animation.blendMode; // automatic length determination in AnimationClip. let duration = animation.length || - 1; const hierarchyTracks = animation.hierarchy || []; for ( let h = 0; h < hierarchyTracks.length; h ++ ) { const animationKeys = hierarchyTracks[ h ].keys; // skip empty tracks if ( ! animationKeys || animationKeys.length === 0 ) continue; // process morph targets if ( animationKeys[ 0 ].morphTargets ) { // figure out all morph targets used in this track const morphTargetNames = {}; let k; for ( k = 0; k < animationKeys.length; k ++ ) { if ( animationKeys[ k ].morphTargets ) { for ( let m = 0; m < animationKeys[ k ].morphTargets.length; m ++ ) { morphTargetNames[ animationKeys[ k ].morphTargets[ m ] ] = - 1; } } } // create a track for each morph target with all zero // morphTargetInfluences except for the keys in which // the morphTarget is named. for ( const morphTargetName in morphTargetNames ) { const times = []; const values = []; for ( let m = 0; m !== animationKeys[ k ].morphTargets.length; ++ m ) { const animationKey = animationKeys[ k ]; times.push( animationKey.time ); values.push( ( animationKey.morphTarget === morphTargetName ) ? 1 : 0 ); } tracks.push( new NumberKeyframeTrack( '.morphTargetInfluence[' + morphTargetName + ']', times, values ) ); } duration = morphTargetNames.length * ( fps || 1.0 ); } else { // ...assume skeletal animation const boneName = '.bones[' + bones[ h ].name + ']'; addNonemptyTrack( VectorKeyframeTrack, boneName + '.position', animationKeys, 'pos', tracks ); addNonemptyTrack( QuaternionKeyframeTrack, boneName + '.quaternion', animationKeys, 'rot', tracks ); addNonemptyTrack( VectorKeyframeTrack, boneName + '.scale', animationKeys, 'scl', tracks ); } } if ( tracks.length === 0 ) { return null; } const clip = new this( clipName, duration, tracks, blendMode ); return clip; } resetDuration() { const tracks = this.tracks; let duration = 0; for ( let i = 0, n = tracks.length; i !== n; ++ i ) { const track = this.tracks[ i ]; duration = Math.max( duration, track.times[ track.times.length - 1 ] ); } this.duration = duration; return this; } trim() { for ( let i = 0; i < this.tracks.length; i ++ ) { this.tracks[ i ].trim( 0, this.duration ); } return this; } validate() { let valid = true; for ( let i = 0; i < this.tracks.length; i ++ ) { valid = valid && this.tracks[ i ].validate(); } return valid; } optimize() { for ( let i = 0; i < this.tracks.length; i ++ ) { this.tracks[ i ].optimize(); } return this; } clone() { const tracks = []; for ( let i = 0; i < this.tracks.length; i ++ ) { tracks.push( this.tracks[ i ].clone() ); } return new this.constructor( this.name, this.duration, tracks, this.blendMode ); } toJSON() { return this.constructor.toJSON( this ); } } function getTrackTypeForValueTypeName( typeName ) { switch ( typeName.toLowerCase() ) { case 'scalar': case 'double': case 'float': case 'number': case 'integer': return NumberKeyframeTrack; case 'vector': case 'vector2': case 'vector3': case 'vector4': return VectorKeyframeTrack; case 'color': return ColorKeyframeTrack; case 'quaternion': return QuaternionKeyframeTrack; case 'bool': case 'boolean': return BooleanKeyframeTrack; case 'string': return StringKeyframeTrack; } throw new Error( 'THREE.KeyframeTrack: Unsupported typeName: ' + typeName ); } function parseKeyframeTrack( json ) { if ( json.type === undefined ) { throw new Error( 'THREE.KeyframeTrack: track type undefined, can not parse' ); } const trackType = getTrackTypeForValueTypeName( json.type ); if ( json.times === undefined ) { const times = [], values = []; AnimationUtils.flattenJSON( json.keys, times, values, 'value' ); json.times = times; json.values = values; } // derived classes can define a static parse method if ( trackType.parse !== undefined ) { return trackType.parse( json ); } else { // by default, we assume a constructor compatible with the base return new trackType( json.name, json.times, json.values, json.interpolation ); } } const Cache = { enabled: false, files: {}, add: function ( key, file ) { if ( this.enabled === false ) return; // console.log( 'THREE.Cache', 'Adding key:', key ); this.files[ key ] = file; }, get: function ( key ) { if ( this.enabled === false ) return; // console.log( 'THREE.Cache', 'Checking key:', key ); return this.files[ key ]; }, remove: function ( key ) { delete this.files[ key ]; }, clear: function () { this.files = {}; } }; class LoadingManager { constructor( onLoad, onProgress, onError ) { const scope = this; let isLoading = false; let itemsLoaded = 0; let itemsTotal = 0; let urlModifier = undefined; const handlers = []; // Refer to #5689 for the reason why we don't set .onStart // in the constructor this.onStart = undefined; this.onLoad = onLoad; this.onProgress = onProgress; this.onError = onError; this.itemStart = function ( url ) { itemsTotal ++; if ( isLoading === false ) { if ( scope.onStart !== undefined ) { scope.onStart( url, itemsLoaded, itemsTotal ); } } isLoading = true; }; this.itemEnd = function ( url ) { itemsLoaded ++; if ( scope.onProgress !== undefined ) { scope.onProgress( url, itemsLoaded, itemsTotal ); } if ( itemsLoaded === itemsTotal ) { isLoading = false; if ( scope.onLoad !== undefined ) { scope.onLoad(); } } }; this.itemError = function ( url ) { if ( scope.onError !== undefined ) { scope.onError( url ); } }; this.resolveURL = function ( url ) { if ( urlModifier ) { return urlModifier( url ); } return url; }; this.setURLModifier = function ( transform ) { urlModifier = transform; return this; }; this.addHandler = function ( regex, loader ) { handlers.push( regex, loader ); return this; }; this.removeHandler = function ( regex ) { const index = handlers.indexOf( regex ); if ( index !== - 1 ) { handlers.splice( index, 2 ); } return this; }; this.getHandler = function ( file ) { for ( let i = 0, l = handlers.length; i < l; i += 2 ) { const regex = handlers[ i ]; const loader = handlers[ i + 1 ]; if ( regex.global ) regex.lastIndex = 0; // see #17920 if ( regex.test( file ) ) { return loader; } } return null; }; } } const DefaultLoadingManager = new LoadingManager(); class Loader { constructor( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; this.crossOrigin = 'anonymous'; this.withCredentials = false; this.path = ''; this.resourcePath = ''; this.requestHeader = {}; } load( /* url, onLoad, onProgress, onError */ ) {} loadAsync( url, onProgress ) { const scope = this; return new Promise( function ( resolve, reject ) { scope.load( url, resolve, onProgress, reject ); } ); } parse( /* data */ ) {} setCrossOrigin( crossOrigin ) { this.crossOrigin = crossOrigin; return this; } setWithCredentials( value ) { this.withCredentials = value; return this; } setPath( path ) { this.path = path; return this; } setResourcePath( resourcePath ) { this.resourcePath = resourcePath; return this; } setRequestHeader( requestHeader ) { this.requestHeader = requestHeader; return this; } } const loading = {}; class FileLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { if ( url === undefined ) url = ''; if ( this.path !== undefined ) url = this.path + url; url = this.manager.resolveURL( url ); const scope = this; const cached = Cache.get( url ); if ( cached !== undefined ) { scope.manager.itemStart( url ); setTimeout( function () { if ( onLoad ) onLoad( cached ); scope.manager.itemEnd( url ); }, 0 ); return cached; } // Check if request is duplicate if ( loading[ url ] !== undefined ) { loading[ url ].push( { onLoad: onLoad, onProgress: onProgress, onError: onError } ); return; } // Check for data: URI const dataUriRegex = /^data:(.*?)(;base64)?,(.*)$/; const dataUriRegexResult = url.match( dataUriRegex ); let request; // Safari can not handle Data URIs through XMLHttpRequest so process manually if ( dataUriRegexResult ) { const mimeType = dataUriRegexResult[ 1 ]; const isBase64 = !! dataUriRegexResult[ 2 ]; let data = dataUriRegexResult[ 3 ]; data = decodeURIComponent( data ); if ( isBase64 ) data = atob( data ); try { let response; const responseType = ( this.responseType || '' ).toLowerCase(); switch ( responseType ) { case 'arraybuffer': case 'blob': const view = new Uint8Array( data.length ); for ( let i = 0; i < data.length; i ++ ) { view[ i ] = data.charCodeAt( i ); } if ( responseType === 'blob' ) { response = new Blob( [ view.buffer ], { type: mimeType } ); } else { response = view.buffer; } break; case 'document': const parser = new DOMParser(); response = parser.parseFromString( data, mimeType ); break; case 'json': response = JSON.parse( data ); break; default: // 'text' or other response = data; break; } // Wait for next browser tick like standard XMLHttpRequest event dispatching does setTimeout( function () { if ( onLoad ) onLoad( response ); scope.manager.itemEnd( url ); }, 0 ); } catch ( error ) { // Wait for next browser tick like standard XMLHttpRequest event dispatching does setTimeout( function () { if ( onError ) onError( error ); scope.manager.itemError( url ); scope.manager.itemEnd( url ); }, 0 ); } } else { // Initialise array for duplicate requests loading[ url ] = []; loading[ url ].push( { onLoad: onLoad, onProgress: onProgress, onError: onError } ); request = new XMLHttpRequest(); request.open( 'GET', url, true ); request.addEventListener( 'load', function ( event ) { const response = this.response; const callbacks = loading[ url ]; delete loading[ url ]; if ( this.status === 200 || this.status === 0 ) { // Some browsers return HTTP Status 0 when using non-http protocol // e.g. 'file://' or 'data://'. Handle as success. if ( this.status === 0 ) console.warn( 'THREE.FileLoader: HTTP Status 0 received.' ); // Add to cache only on HTTP success, so that we do not cache // error response bodies as proper responses to requests. Cache.add( url, response ); for ( let i = 0, il = callbacks.length; i < il; i ++ ) { const callback = callbacks[ i ]; if ( callback.onLoad ) callback.onLoad( response ); } scope.manager.itemEnd( url ); } else { for ( let i = 0, il = callbacks.length; i < il; i ++ ) { const callback = callbacks[ i ]; if ( callback.onError ) callback.onError( event ); } scope.manager.itemError( url ); scope.manager.itemEnd( url ); } }, false ); request.addEventListener( 'progress', function ( event ) { const callbacks = loading[ url ]; for ( let i = 0, il = callbacks.length; i < il; i ++ ) { const callback = callbacks[ i ]; if ( callback.onProgress ) callback.onProgress( event ); } }, false ); request.addEventListener( 'error', function ( event ) { const callbacks = loading[ url ]; delete loading[ url ]; for ( let i = 0, il = callbacks.length; i < il; i ++ ) { const callback = callbacks[ i ]; if ( callback.onError ) callback.onError( event ); } scope.manager.itemError( url ); scope.manager.itemEnd( url ); }, false ); request.addEventListener( 'abort', function ( event ) { const callbacks = loading[ url ]; delete loading[ url ]; for ( let i = 0, il = callbacks.length; i < il; i ++ ) { const callback = callbacks[ i ]; if ( callback.onError ) callback.onError( event ); } scope.manager.itemError( url ); scope.manager.itemEnd( url ); }, false ); if ( this.responseType !== undefined ) request.responseType = this.responseType; if ( this.withCredentials !== undefined ) request.withCredentials = this.withCredentials; if ( request.overrideMimeType ) request.overrideMimeType( this.mimeType !== undefined ? this.mimeType : 'text/plain' ); for ( const header in this.requestHeader ) { request.setRequestHeader( header, this.requestHeader[ header ] ); } request.send( null ); } scope.manager.itemStart( url ); return request; } setResponseType( value ) { this.responseType = value; return this; } setMimeType( value ) { this.mimeType = value; return this; } } class AnimationLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { const scope = this; const loader = new FileLoader( this.manager ); loader.setPath( this.path ); loader.setRequestHeader( this.requestHeader ); loader.setWithCredentials( this.withCredentials ); loader.load( url, function ( text ) { try { onLoad( scope.parse( JSON.parse( text ) ) ); } catch ( e ) { if ( onError ) { onError( e ); } else { console.error( e ); } scope.manager.itemError( url ); } }, onProgress, onError ); } parse( json ) { const animations = []; for ( let i = 0; i < json.length; i ++ ) { const clip = AnimationClip.parse( json[ i ] ); animations.push( clip ); } return animations; } } /** * Abstract Base class to block based textures loader (dds, pvr, ...) * * Sub classes have to implement the parse() method which will be used in load(). */ class CompressedTextureLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { const scope = this; const images = []; const texture = new CompressedTexture(); const loader = new FileLoader( this.manager ); loader.setPath( this.path ); loader.setResponseType( 'arraybuffer' ); loader.setRequestHeader( this.requestHeader ); loader.setWithCredentials( scope.withCredentials ); let loaded = 0; function loadTexture( i ) { loader.load( url[ i ], function ( buffer ) { const texDatas = scope.parse( buffer, true ); images[ i ] = { width: texDatas.width, height: texDatas.height, format: texDatas.format, mipmaps: texDatas.mipmaps }; loaded += 1; if ( loaded === 6 ) { if ( texDatas.mipmapCount === 1 ) texture.minFilter = LinearFilter; texture.image = images; texture.format = texDatas.format; texture.needsUpdate = true; if ( onLoad ) onLoad( texture ); } }, onProgress, onError ); } if ( Array.isArray( url ) ) { for ( let i = 0, il = url.length; i < il; ++ i ) { loadTexture( i ); } } else { // compressed cubemap texture stored in a single DDS file loader.load( url, function ( buffer ) { const texDatas = scope.parse( buffer, true ); if ( texDatas.isCubemap ) { const faces = texDatas.mipmaps.length / texDatas.mipmapCount; for ( let f = 0; f < faces; f ++ ) { images[ f ] = { mipmaps: [] }; for ( let i = 0; i < texDatas.mipmapCount; i ++ ) { images[ f ].mipmaps.push( texDatas.mipmaps[ f * texDatas.mipmapCount + i ] ); images[ f ].format = texDatas.format; images[ f ].width = texDatas.width; images[ f ].height = texDatas.height; } } texture.image = images; } else { texture.image.width = texDatas.width; texture.image.height = texDatas.height; texture.mipmaps = texDatas.mipmaps; } if ( texDatas.mipmapCount === 1 ) { texture.minFilter = LinearFilter; } texture.format = texDatas.format; texture.needsUpdate = true; if ( onLoad ) onLoad( texture ); }, onProgress, onError ); } return texture; } } class ImageLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { if ( this.path !== undefined ) url = this.path + url; url = this.manager.resolveURL( url ); const scope = this; const cached = Cache.get( url ); if ( cached !== undefined ) { scope.manager.itemStart( url ); setTimeout( function () { if ( onLoad ) onLoad( cached ); scope.manager.itemEnd( url ); }, 0 ); return cached; } const image = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'img' ); function onImageLoad() { image.removeEventListener( 'load', onImageLoad, false ); image.removeEventListener( 'error', onImageError, false ); Cache.add( url, this ); if ( onLoad ) onLoad( this ); scope.manager.itemEnd( url ); } function onImageError( event ) { image.removeEventListener( 'load', onImageLoad, false ); image.removeEventListener( 'error', onImageError, false ); if ( onError ) onError( event ); scope.manager.itemError( url ); scope.manager.itemEnd( url ); } image.addEventListener( 'load', onImageLoad, false ); image.addEventListener( 'error', onImageError, false ); if ( url.substr( 0, 5 ) !== 'data:' ) { if ( this.crossOrigin !== undefined ) image.crossOrigin = this.crossOrigin; } scope.manager.itemStart( url ); image.src = url; return image; } } class CubeTextureLoader extends Loader { constructor( manager ) { super( manager ); } load( urls, onLoad, onProgress, onError ) { const texture = new CubeTexture(); const loader = new ImageLoader( this.manager ); loader.setCrossOrigin( this.crossOrigin ); loader.setPath( this.path ); let loaded = 0; function loadTexture( i ) { loader.load( urls[ i ], function ( image ) { texture.images[ i ] = image; loaded ++; if ( loaded === 6 ) { texture.needsUpdate = true; if ( onLoad ) onLoad( texture ); } }, undefined, onError ); } for ( let i = 0; i < urls.length; ++ i ) { loadTexture( i ); } return texture; } } /** * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...) * * Sub classes have to implement the parse() method which will be used in load(). */ class DataTextureLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { const scope = this; const texture = new DataTexture(); const loader = new FileLoader( this.manager ); loader.setResponseType( 'arraybuffer' ); loader.setRequestHeader( this.requestHeader ); loader.setPath( this.path ); loader.setWithCredentials( scope.withCredentials ); loader.load( url, function ( buffer ) { const texData = scope.parse( buffer ); if ( ! texData ) return; if ( texData.image !== undefined ) { texture.image = texData.image; } else if ( texData.data !== undefined ) { texture.image.width = texData.width; texture.image.height = texData.height; texture.image.data = texData.data; } texture.wrapS = texData.wrapS !== undefined ? texData.wrapS : ClampToEdgeWrapping; texture.wrapT = texData.wrapT !== undefined ? texData.wrapT : ClampToEdgeWrapping; texture.magFilter = texData.magFilter !== undefined ? texData.magFilter : LinearFilter; texture.minFilter = texData.minFilter !== undefined ? texData.minFilter : LinearFilter; texture.anisotropy = texData.anisotropy !== undefined ? texData.anisotropy : 1; if ( texData.encoding !== undefined ) { texture.encoding = texData.encoding; } if ( texData.flipY !== undefined ) { texture.flipY = texData.flipY; } if ( texData.format !== undefined ) { texture.format = texData.format; } if ( texData.type !== undefined ) { texture.type = texData.type; } if ( texData.mipmaps !== undefined ) { texture.mipmaps = texData.mipmaps; texture.minFilter = LinearMipmapLinearFilter; // presumably... } if ( texData.mipmapCount === 1 ) { texture.minFilter = LinearFilter; } if ( texData.generateMipmaps !== undefined ) { texture.generateMipmaps = texData.generateMipmaps; } texture.needsUpdate = true; if ( onLoad ) onLoad( texture, texData ); }, onProgress, onError ); return texture; } } class TextureLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { const texture = new Texture(); const loader = new ImageLoader( this.manager ); loader.setCrossOrigin( this.crossOrigin ); loader.setPath( this.path ); loader.load( url, function ( image ) { texture.image = image; // JPEGs can't have an alpha channel, so memory can be saved by storing them as RGB. const isJPEG = url.search( /\.jpe?g($|\?)/i ) > 0 || url.search( /^data\:image\/jpeg/ ) === 0; texture.format = isJPEG ? RGBFormat : RGBAFormat; texture.needsUpdate = true; if ( onLoad !== undefined ) { onLoad( texture ); } }, onProgress, onError ); return texture; } } /************************************************************** * Curved Path - a curve path is simply a array of connected * curves, but retains the api of a curve **************************************************************/ class CurvePath extends Curve { constructor() { super(); this.type = 'CurvePath'; this.curves = []; this.autoClose = false; // Automatically closes the path } add( curve ) { this.curves.push( curve ); } closePath() { // Add a line curve if start and end of lines are not connected const startPoint = this.curves[ 0 ].getPoint( 0 ); const endPoint = this.curves[ this.curves.length - 1 ].getPoint( 1 ); if ( ! startPoint.equals( endPoint ) ) { this.curves.push( new LineCurve( endPoint, startPoint ) ); } } // To get accurate point with reference to // entire path distance at time t, // following has to be done: // 1. Length of each sub path have to be known // 2. Locate and identify type of curve // 3. Get t for the curve // 4. Return curve.getPointAt(t') getPoint( t ) { const d = t * this.getLength(); const curveLengths = this.getCurveLengths(); let i = 0; // To think about boundaries points. while ( i < curveLengths.length ) { if ( curveLengths[ i ] >= d ) { const diff = curveLengths[ i ] - d; const curve = this.curves[ i ]; const segmentLength = curve.getLength(); const u = segmentLength === 0 ? 0 : 1 - diff / segmentLength; return curve.getPointAt( u ); } i ++; } return null; // loop where sum != 0, sum > d , sum+1 1 && ! points[ points.length - 1 ].equals( points[ 0 ] ) ) { points.push( points[ 0 ] ); } return points; } copy( source ) { super.copy( source ); this.curves = []; for ( let i = 0, l = source.curves.length; i < l; i ++ ) { const curve = source.curves[ i ]; this.curves.push( curve.clone() ); } this.autoClose = source.autoClose; return this; } toJSON() { const data = super.toJSON(); data.autoClose = this.autoClose; data.curves = []; for ( let i = 0, l = this.curves.length; i < l; i ++ ) { const curve = this.curves[ i ]; data.curves.push( curve.toJSON() ); } return data; } fromJSON( json ) { super.fromJSON( json ); this.autoClose = json.autoClose; this.curves = []; for ( let i = 0, l = json.curves.length; i < l; i ++ ) { const curve = json.curves[ i ]; this.curves.push( new Curves[ curve.type ]().fromJSON( curve ) ); } return this; } } class Path extends CurvePath { constructor( points ) { super(); this.type = 'Path'; this.currentPoint = new Vector2(); if ( points ) { this.setFromPoints( points ); } } setFromPoints( points ) { this.moveTo( points[ 0 ].x, points[ 0 ].y ); for ( let i = 1, l = points.length; i < l; i ++ ) { this.lineTo( points[ i ].x, points[ i ].y ); } return this; } moveTo( x, y ) { this.currentPoint.set( x, y ); // TODO consider referencing vectors instead of copying? return this; } lineTo( x, y ) { const curve = new LineCurve( this.currentPoint.clone(), new Vector2( x, y ) ); this.curves.push( curve ); this.currentPoint.set( x, y ); return this; } quadraticCurveTo( aCPx, aCPy, aX, aY ) { const curve = new QuadraticBezierCurve( this.currentPoint.clone(), new Vector2( aCPx, aCPy ), new Vector2( aX, aY ) ); this.curves.push( curve ); this.currentPoint.set( aX, aY ); return this; } bezierCurveTo( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) { const curve = new CubicBezierCurve( this.currentPoint.clone(), new Vector2( aCP1x, aCP1y ), new Vector2( aCP2x, aCP2y ), new Vector2( aX, aY ) ); this.curves.push( curve ); this.currentPoint.set( aX, aY ); return this; } splineThru( pts /*Array of Vector*/ ) { const npts = [ this.currentPoint.clone() ].concat( pts ); const curve = new SplineCurve( npts ); this.curves.push( curve ); this.currentPoint.copy( pts[ pts.length - 1 ] ); return this; } arc( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { const x0 = this.currentPoint.x; const y0 = this.currentPoint.y; this.absarc( aX + x0, aY + y0, aRadius, aStartAngle, aEndAngle, aClockwise ); return this; } absarc( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { this.absellipse( aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise ); return this; } ellipse( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) { const x0 = this.currentPoint.x; const y0 = this.currentPoint.y; this.absellipse( aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ); return this; } absellipse( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) { const curve = new EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ); if ( this.curves.length > 0 ) { // if a previous curve is present, attempt to join const firstPoint = curve.getPoint( 0 ); if ( ! firstPoint.equals( this.currentPoint ) ) { this.lineTo( firstPoint.x, firstPoint.y ); } } this.curves.push( curve ); const lastPoint = curve.getPoint( 1 ); this.currentPoint.copy( lastPoint ); return this; } copy( source ) { super.copy( source ); this.currentPoint.copy( source.currentPoint ); return this; } toJSON() { const data = super.toJSON(); data.currentPoint = this.currentPoint.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.currentPoint.fromArray( json.currentPoint ); return this; } } class Shape extends Path { constructor( points ) { super( points ); this.uuid = generateUUID(); this.type = 'Shape'; this.holes = []; } getPointsHoles( divisions ) { const holesPts = []; for ( let i = 0, l = this.holes.length; i < l; i ++ ) { holesPts[ i ] = this.holes[ i ].getPoints( divisions ); } return holesPts; } // get points of shape and holes (keypoints based on segments parameter) extractPoints( divisions ) { return { shape: this.getPoints( divisions ), holes: this.getPointsHoles( divisions ) }; } copy( source ) { super.copy( source ); this.holes = []; for ( let i = 0, l = source.holes.length; i < l; i ++ ) { const hole = source.holes[ i ]; this.holes.push( hole.clone() ); } return this; } toJSON() { const data = super.toJSON(); data.uuid = this.uuid; data.holes = []; for ( let i = 0, l = this.holes.length; i < l; i ++ ) { const hole = this.holes[ i ]; data.holes.push( hole.toJSON() ); } return data; } fromJSON( json ) { super.fromJSON( json ); this.uuid = json.uuid; this.holes = []; for ( let i = 0, l = json.holes.length; i < l; i ++ ) { const hole = json.holes[ i ]; this.holes.push( new Path().fromJSON( hole ) ); } return this; } } class Light extends Object3D { constructor( color, intensity = 1 ) { super(); this.type = 'Light'; this.color = new Color( color ); this.intensity = intensity; } dispose() { // Empty here in base class; some subclasses override. } copy( source ) { super.copy( source ); this.color.copy( source.color ); this.intensity = source.intensity; return this; } toJSON( meta ) { const data = super.toJSON( meta ); data.object.color = this.color.getHex(); data.object.intensity = this.intensity; if ( this.groundColor !== undefined ) data.object.groundColor = this.groundColor.getHex(); if ( this.distance !== undefined ) data.object.distance = this.distance; if ( this.angle !== undefined ) data.object.angle = this.angle; if ( this.decay !== undefined ) data.object.decay = this.decay; if ( this.penumbra !== undefined ) data.object.penumbra = this.penumbra; if ( this.shadow !== undefined ) data.object.shadow = this.shadow.toJSON(); return data; } } Light.prototype.isLight = true; class HemisphereLight extends Light { constructor( skyColor, groundColor, intensity ) { super( skyColor, intensity ); this.type = 'HemisphereLight'; this.position.copy( Object3D.DefaultUp ); this.updateMatrix(); this.groundColor = new Color( groundColor ); } copy( source ) { Light.prototype.copy.call( this, source ); this.groundColor.copy( source.groundColor ); return this; } } HemisphereLight.prototype.isHemisphereLight = true; const _projScreenMatrix$1 = /*@__PURE__*/ new Matrix4(); const _lightPositionWorld$1 = /*@__PURE__*/ new Vector3(); const _lookTarget$1 = /*@__PURE__*/ new Vector3(); class LightShadow { constructor( camera ) { this.camera = camera; this.bias = 0; this.normalBias = 0; this.radius = 1; this.blurSamples = 8; this.mapSize = new Vector2( 512, 512 ); this.map = null; this.mapPass = null; this.matrix = new Matrix4(); this.autoUpdate = true; this.needsUpdate = false; this._frustum = new Frustum(); this._frameExtents = new Vector2( 1, 1 ); this._viewportCount = 1; this._viewports = [ new Vector4( 0, 0, 1, 1 ) ]; } getViewportCount() { return this._viewportCount; } getFrustum() { return this._frustum; } updateMatrices( light ) { const shadowCamera = this.camera; const shadowMatrix = this.matrix; _lightPositionWorld$1.setFromMatrixPosition( light.matrixWorld ); shadowCamera.position.copy( _lightPositionWorld$1 ); _lookTarget$1.setFromMatrixPosition( light.target.matrixWorld ); shadowCamera.lookAt( _lookTarget$1 ); shadowCamera.updateMatrixWorld(); _projScreenMatrix$1.multiplyMatrices( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse ); this._frustum.setFromProjectionMatrix( _projScreenMatrix$1 ); shadowMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 ); shadowMatrix.multiply( shadowCamera.projectionMatrix ); shadowMatrix.multiply( shadowCamera.matrixWorldInverse ); } getViewport( viewportIndex ) { return this._viewports[ viewportIndex ]; } getFrameExtents() { return this._frameExtents; } dispose() { if ( this.map ) { this.map.dispose(); } if ( this.mapPass ) { this.mapPass.dispose(); } } copy( source ) { this.camera = source.camera.clone(); this.bias = source.bias; this.radius = source.radius; this.mapSize.copy( source.mapSize ); return this; } clone() { return new this.constructor().copy( this ); } toJSON() { const object = {}; if ( this.bias !== 0 ) object.bias = this.bias; if ( this.normalBias !== 0 ) object.normalBias = this.normalBias; if ( this.radius !== 1 ) object.radius = this.radius; if ( this.mapSize.x !== 512 || this.mapSize.y !== 512 ) object.mapSize = this.mapSize.toArray(); object.camera = this.camera.toJSON( false ).object; delete object.camera.matrix; return object; } } class SpotLightShadow extends LightShadow { constructor() { super( new PerspectiveCamera( 50, 1, 0.5, 500 ) ); this.focus = 1; } updateMatrices( light ) { const camera = this.camera; const fov = RAD2DEG * 2 * light.angle * this.focus; const aspect = this.mapSize.width / this.mapSize.height; const far = light.distance || camera.far; if ( fov !== camera.fov || aspect !== camera.aspect || far !== camera.far ) { camera.fov = fov; camera.aspect = aspect; camera.far = far; camera.updateProjectionMatrix(); } super.updateMatrices( light ); } copy( source ) { super.copy( source ); this.focus = source.focus; return this; } } SpotLightShadow.prototype.isSpotLightShadow = true; class SpotLight extends Light { constructor( color, intensity, distance = 0, angle = Math.PI / 3, penumbra = 0, decay = 1 ) { super( color, intensity ); this.type = 'SpotLight'; this.position.copy( Object3D.DefaultUp ); this.updateMatrix(); this.target = new Object3D(); this.distance = distance; this.angle = angle; this.penumbra = penumbra; this.decay = decay; // for physically correct lights, should be 2. this.shadow = new SpotLightShadow(); } get power() { // compute the light's luminous power (in lumens) from its intensity (in candela) // by convention for a spotlight, luminous power (lm) = π * luminous intensity (cd) return this.intensity * Math.PI; } set power( power ) { // set the light's intensity (in candela) from the desired luminous power (in lumens) this.intensity = power / Math.PI; } dispose() { this.shadow.dispose(); } copy( source ) { super.copy( source ); this.distance = source.distance; this.angle = source.angle; this.penumbra = source.penumbra; this.decay = source.decay; this.target = source.target.clone(); this.shadow = source.shadow.clone(); return this; } } SpotLight.prototype.isSpotLight = true; const _projScreenMatrix = /*@__PURE__*/ new Matrix4(); const _lightPositionWorld = /*@__PURE__*/ new Vector3(); const _lookTarget = /*@__PURE__*/ new Vector3(); class PointLightShadow extends LightShadow { constructor() { super( new PerspectiveCamera( 90, 1, 0.5, 500 ) ); this._frameExtents = new Vector2( 4, 2 ); this._viewportCount = 6; this._viewports = [ // These viewports map a cube-map onto a 2D texture with the // following orientation: // // xzXZ // y Y // // X - Positive x direction // x - Negative x direction // Y - Positive y direction // y - Negative y direction // Z - Positive z direction // z - Negative z direction // positive X new Vector4( 2, 1, 1, 1 ), // negative X new Vector4( 0, 1, 1, 1 ), // positive Z new Vector4( 3, 1, 1, 1 ), // negative Z new Vector4( 1, 1, 1, 1 ), // positive Y new Vector4( 3, 0, 1, 1 ), // negative Y new Vector4( 1, 0, 1, 1 ) ]; this._cubeDirections = [ new Vector3( 1, 0, 0 ), new Vector3( - 1, 0, 0 ), new Vector3( 0, 0, 1 ), new Vector3( 0, 0, - 1 ), new Vector3( 0, 1, 0 ), new Vector3( 0, - 1, 0 ) ]; this._cubeUps = [ new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 0, 1 ), new Vector3( 0, 0, - 1 ) ]; } updateMatrices( light, viewportIndex = 0 ) { const camera = this.camera; const shadowMatrix = this.matrix; const far = light.distance || camera.far; if ( far !== camera.far ) { camera.far = far; camera.updateProjectionMatrix(); } _lightPositionWorld.setFromMatrixPosition( light.matrixWorld ); camera.position.copy( _lightPositionWorld ); _lookTarget.copy( camera.position ); _lookTarget.add( this._cubeDirections[ viewportIndex ] ); camera.up.copy( this._cubeUps[ viewportIndex ] ); camera.lookAt( _lookTarget ); camera.updateMatrixWorld(); shadowMatrix.makeTranslation( - _lightPositionWorld.x, - _lightPositionWorld.y, - _lightPositionWorld.z ); _projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ); this._frustum.setFromProjectionMatrix( _projScreenMatrix ); } } PointLightShadow.prototype.isPointLightShadow = true; class PointLight extends Light { constructor( color, intensity, distance = 0, decay = 1 ) { super( color, intensity ); this.type = 'PointLight'; this.distance = distance; this.decay = decay; // for physically correct lights, should be 2. this.shadow = new PointLightShadow(); } get power() { // compute the light's luminous power (in lumens) from its intensity (in candela) // for an isotropic light source, luminous power (lm) = 4 π luminous intensity (cd) return this.intensity * 4 * Math.PI; } set power( power ) { // set the light's intensity (in candela) from the desired luminous power (in lumens) this.intensity = power / ( 4 * Math.PI ); } dispose() { this.shadow.dispose(); } copy( source ) { super.copy( source ); this.distance = source.distance; this.decay = source.decay; this.shadow = source.shadow.clone(); return this; } } PointLight.prototype.isPointLight = true; class DirectionalLightShadow extends LightShadow { constructor() { super( new OrthographicCamera( - 5, 5, 5, - 5, 0.5, 500 ) ); } } DirectionalLightShadow.prototype.isDirectionalLightShadow = true; class DirectionalLight extends Light { constructor( color, intensity ) { super( color, intensity ); this.type = 'DirectionalLight'; this.position.copy( Object3D.DefaultUp ); this.updateMatrix(); this.target = new Object3D(); this.shadow = new DirectionalLightShadow(); } dispose() { this.shadow.dispose(); } copy( source ) { super.copy( source ); this.target = source.target.clone(); this.shadow = source.shadow.clone(); return this; } } DirectionalLight.prototype.isDirectionalLight = true; class AmbientLight extends Light { constructor( color, intensity ) { super( color, intensity ); this.type = 'AmbientLight'; } } AmbientLight.prototype.isAmbientLight = true; class RectAreaLight extends Light { constructor( color, intensity, width = 10, height = 10 ) { super( color, intensity ); this.type = 'RectAreaLight'; this.width = width; this.height = height; } get power() { // compute the light's luminous power (in lumens) from its intensity (in nits) return this.intensity * this.width * this.height * Math.PI; } set power( power ) { // set the light's intensity (in nits) from the desired luminous power (in lumens) this.intensity = power / ( this.width * this.height * Math.PI ); } copy( source ) { super.copy( source ); this.width = source.width; this.height = source.height; return this; } toJSON( meta ) { const data = super.toJSON( meta ); data.object.width = this.width; data.object.height = this.height; return data; } } RectAreaLight.prototype.isRectAreaLight = true; /** * Primary reference: * https://graphics.stanford.edu/papers/envmap/envmap.pdf * * Secondary reference: * https://www.ppsloan.org/publications/StupidSH36.pdf */ // 3-band SH defined by 9 coefficients class SphericalHarmonics3 { constructor() { this.coefficients = []; for ( let i = 0; i < 9; i ++ ) { this.coefficients.push( new Vector3() ); } } set( coefficients ) { for ( let i = 0; i < 9; i ++ ) { this.coefficients[ i ].copy( coefficients[ i ] ); } return this; } zero() { for ( let i = 0; i < 9; i ++ ) { this.coefficients[ i ].set( 0, 0, 0 ); } return this; } // get the radiance in the direction of the normal // target is a Vector3 getAt( normal, target ) { // normal is assumed to be unit length const x = normal.x, y = normal.y, z = normal.z; const coeff = this.coefficients; // band 0 target.copy( coeff[ 0 ] ).multiplyScalar( 0.282095 ); // band 1 target.addScaledVector( coeff[ 1 ], 0.488603 * y ); target.addScaledVector( coeff[ 2 ], 0.488603 * z ); target.addScaledVector( coeff[ 3 ], 0.488603 * x ); // band 2 target.addScaledVector( coeff[ 4 ], 1.092548 * ( x * y ) ); target.addScaledVector( coeff[ 5 ], 1.092548 * ( y * z ) ); target.addScaledVector( coeff[ 6 ], 0.315392 * ( 3.0 * z * z - 1.0 ) ); target.addScaledVector( coeff[ 7 ], 1.092548 * ( x * z ) ); target.addScaledVector( coeff[ 8 ], 0.546274 * ( x * x - y * y ) ); return target; } // get the irradiance (radiance convolved with cosine lobe) in the direction of the normal // target is a Vector3 // https://graphics.stanford.edu/papers/envmap/envmap.pdf getIrradianceAt( normal, target ) { // normal is assumed to be unit length const x = normal.x, y = normal.y, z = normal.z; const coeff = this.coefficients; // band 0 target.copy( coeff[ 0 ] ).multiplyScalar( 0.886227 ); // π * 0.282095 // band 1 target.addScaledVector( coeff[ 1 ], 2.0 * 0.511664 * y ); // ( 2 * π / 3 ) * 0.488603 target.addScaledVector( coeff[ 2 ], 2.0 * 0.511664 * z ); target.addScaledVector( coeff[ 3 ], 2.0 * 0.511664 * x ); // band 2 target.addScaledVector( coeff[ 4 ], 2.0 * 0.429043 * x * y ); // ( π / 4 ) * 1.092548 target.addScaledVector( coeff[ 5 ], 2.0 * 0.429043 * y * z ); target.addScaledVector( coeff[ 6 ], 0.743125 * z * z - 0.247708 ); // ( π / 4 ) * 0.315392 * 3 target.addScaledVector( coeff[ 7 ], 2.0 * 0.429043 * x * z ); target.addScaledVector( coeff[ 8 ], 0.429043 * ( x * x - y * y ) ); // ( π / 4 ) * 0.546274 return target; } add( sh ) { for ( let i = 0; i < 9; i ++ ) { this.coefficients[ i ].add( sh.coefficients[ i ] ); } return this; } addScaledSH( sh, s ) { for ( let i = 0; i < 9; i ++ ) { this.coefficients[ i ].addScaledVector( sh.coefficients[ i ], s ); } return this; } scale( s ) { for ( let i = 0; i < 9; i ++ ) { this.coefficients[ i ].multiplyScalar( s ); } return this; } lerp( sh, alpha ) { for ( let i = 0; i < 9; i ++ ) { this.coefficients[ i ].lerp( sh.coefficients[ i ], alpha ); } return this; } equals( sh ) { for ( let i = 0; i < 9; i ++ ) { if ( ! this.coefficients[ i ].equals( sh.coefficients[ i ] ) ) { return false; } } return true; } copy( sh ) { return this.set( sh.coefficients ); } clone() { return new this.constructor().copy( this ); } fromArray( array, offset = 0 ) { const coefficients = this.coefficients; for ( let i = 0; i < 9; i ++ ) { coefficients[ i ].fromArray( array, offset + ( i * 3 ) ); } return this; } toArray( array = [], offset = 0 ) { const coefficients = this.coefficients; for ( let i = 0; i < 9; i ++ ) { coefficients[ i ].toArray( array, offset + ( i * 3 ) ); } return array; } // evaluate the basis functions // shBasis is an Array[ 9 ] static getBasisAt( normal, shBasis ) { // normal is assumed to be unit length const x = normal.x, y = normal.y, z = normal.z; // band 0 shBasis[ 0 ] = 0.282095; // band 1 shBasis[ 1 ] = 0.488603 * y; shBasis[ 2 ] = 0.488603 * z; shBasis[ 3 ] = 0.488603 * x; // band 2 shBasis[ 4 ] = 1.092548 * x * y; shBasis[ 5 ] = 1.092548 * y * z; shBasis[ 6 ] = 0.315392 * ( 3 * z * z - 1 ); shBasis[ 7 ] = 1.092548 * x * z; shBasis[ 8 ] = 0.546274 * ( x * x - y * y ); } } SphericalHarmonics3.prototype.isSphericalHarmonics3 = true; class LightProbe extends Light { constructor( sh = new SphericalHarmonics3(), intensity = 1 ) { super( undefined, intensity ); this.sh = sh; } copy( source ) { super.copy( source ); this.sh.copy( source.sh ); return this; } fromJSON( json ) { this.intensity = json.intensity; // TODO: Move this bit to Light.fromJSON(); this.sh.fromArray( json.sh ); return this; } toJSON( meta ) { const data = super.toJSON( meta ); data.object.sh = this.sh.toArray(); return data; } } LightProbe.prototype.isLightProbe = true; class MaterialLoader extends Loader { constructor( manager ) { super( manager ); this.textures = {}; } load( url, onLoad, onProgress, onError ) { const scope = this; const loader = new FileLoader( scope.manager ); loader.setPath( scope.path ); loader.setRequestHeader( scope.requestHeader ); loader.setWithCredentials( scope.withCredentials ); loader.load( url, function ( text ) { try { onLoad( scope.parse( JSON.parse( text ) ) ); } catch ( e ) { if ( onError ) { onError( e ); } else { console.error( e ); } scope.manager.itemError( url ); } }, onProgress, onError ); } parse( json ) { const textures = this.textures; function getTexture( name ) { if ( textures[ name ] === undefined ) { console.warn( 'THREE.MaterialLoader: Undefined texture', name ); } return textures[ name ]; } const material = new Materials[ json.type ](); if ( json.uuid !== undefined ) material.uuid = json.uuid; if ( json.name !== undefined ) material.name = json.name; if ( json.color !== undefined && material.color !== undefined ) material.color.setHex( json.color ); if ( json.roughness !== undefined ) material.roughness = json.roughness; if ( json.metalness !== undefined ) material.metalness = json.metalness; if ( json.sheenTint !== undefined ) material.sheenTint = new Color().setHex( json.sheenTint ); if ( json.emissive !== undefined && material.emissive !== undefined ) material.emissive.setHex( json.emissive ); if ( json.specular !== undefined && material.specular !== undefined ) material.specular.setHex( json.specular ); if ( json.specularIntensity !== undefined ) material.specularIntensity = json.specularIntensity; if ( json.specularTint !== undefined && material.specularTint !== undefined ) material.specularTint.setHex( json.specularTint ); if ( json.shininess !== undefined ) material.shininess = json.shininess; if ( json.clearcoat !== undefined ) material.clearcoat = json.clearcoat; if ( json.clearcoatRoughness !== undefined ) material.clearcoatRoughness = json.clearcoatRoughness; if ( json.transmission !== undefined ) material.transmission = json.transmission; if ( json.thickness !== undefined ) material.thickness = json.thickness; if ( json.attenuationDistance !== undefined ) material.attenuationDistance = json.attenuationDistance; if ( json.attenuationTint !== undefined && material.attenuationTint !== undefined ) material.attenuationTint.setHex( json.attenuationTint ); if ( json.fog !== undefined ) material.fog = json.fog; if ( json.flatShading !== undefined ) material.flatShading = json.flatShading; if ( json.blending !== undefined ) material.blending = json.blending; if ( json.combine !== undefined ) material.combine = json.combine; if ( json.side !== undefined ) material.side = json.side; if ( json.shadowSide !== undefined ) material.shadowSide = json.shadowSide; if ( json.opacity !== undefined ) material.opacity = json.opacity; if ( json.format !== undefined ) material.format = json.format; if ( json.transparent !== undefined ) material.transparent = json.transparent; if ( json.alphaTest !== undefined ) material.alphaTest = json.alphaTest; if ( json.depthTest !== undefined ) material.depthTest = json.depthTest; if ( json.depthWrite !== undefined ) material.depthWrite = json.depthWrite; if ( json.colorWrite !== undefined ) material.colorWrite = json.colorWrite; if ( json.stencilWrite !== undefined ) material.stencilWrite = json.stencilWrite; if ( json.stencilWriteMask !== undefined ) material.stencilWriteMask = json.stencilWriteMask; if ( json.stencilFunc !== undefined ) material.stencilFunc = json.stencilFunc; if ( json.stencilRef !== undefined ) material.stencilRef = json.stencilRef; if ( json.stencilFuncMask !== undefined ) material.stencilFuncMask = json.stencilFuncMask; if ( json.stencilFail !== undefined ) material.stencilFail = json.stencilFail; if ( json.stencilZFail !== undefined ) material.stencilZFail = json.stencilZFail; if ( json.stencilZPass !== undefined ) material.stencilZPass = json.stencilZPass; if ( json.wireframe !== undefined ) material.wireframe = json.wireframe; if ( json.wireframeLinewidth !== undefined ) material.wireframeLinewidth = json.wireframeLinewidth; if ( json.wireframeLinecap !== undefined ) material.wireframeLinecap = json.wireframeLinecap; if ( json.wireframeLinejoin !== undefined ) material.wireframeLinejoin = json.wireframeLinejoin; if ( json.rotation !== undefined ) material.rotation = json.rotation; if ( json.linewidth !== 1 ) material.linewidth = json.linewidth; if ( json.dashSize !== undefined ) material.dashSize = json.dashSize; if ( json.gapSize !== undefined ) material.gapSize = json.gapSize; if ( json.scale !== undefined ) material.scale = json.scale; if ( json.polygonOffset !== undefined ) material.polygonOffset = json.polygonOffset; if ( json.polygonOffsetFactor !== undefined ) material.polygonOffsetFactor = json.polygonOffsetFactor; if ( json.polygonOffsetUnits !== undefined ) material.polygonOffsetUnits = json.polygonOffsetUnits; if ( json.dithering !== undefined ) material.dithering = json.dithering; if ( json.alphaToCoverage !== undefined ) material.alphaToCoverage = json.alphaToCoverage; if ( json.premultipliedAlpha !== undefined ) material.premultipliedAlpha = json.premultipliedAlpha; if ( json.visible !== undefined ) material.visible = json.visible; if ( json.toneMapped !== undefined ) material.toneMapped = json.toneMapped; if ( json.userData !== undefined ) material.userData = json.userData; if ( json.vertexColors !== undefined ) { if ( typeof json.vertexColors === 'number' ) { material.vertexColors = ( json.vertexColors > 0 ) ? true : false; } else { material.vertexColors = json.vertexColors; } } // Shader Material if ( json.uniforms !== undefined ) { for ( const name in json.uniforms ) { const uniform = json.uniforms[ name ]; material.uniforms[ name ] = {}; switch ( uniform.type ) { case 't': material.uniforms[ name ].value = getTexture( uniform.value ); break; case 'c': material.uniforms[ name ].value = new Color().setHex( uniform.value ); break; case 'v2': material.uniforms[ name ].value = new Vector2().fromArray( uniform.value ); break; case 'v3': material.uniforms[ name ].value = new Vector3().fromArray( uniform.value ); break; case 'v4': material.uniforms[ name ].value = new Vector4().fromArray( uniform.value ); break; case 'm3': material.uniforms[ name ].value = new Matrix3().fromArray( uniform.value ); break; case 'm4': material.uniforms[ name ].value = new Matrix4().fromArray( uniform.value ); break; default: material.uniforms[ name ].value = uniform.value; } } } if ( json.defines !== undefined ) material.defines = json.defines; if ( json.vertexShader !== undefined ) material.vertexShader = json.vertexShader; if ( json.fragmentShader !== undefined ) material.fragmentShader = json.fragmentShader; if ( json.extensions !== undefined ) { for ( const key in json.extensions ) { material.extensions[ key ] = json.extensions[ key ]; } } // Deprecated if ( json.shading !== undefined ) material.flatShading = json.shading === 1; // THREE.FlatShading // for PointsMaterial if ( json.size !== undefined ) material.size = json.size; if ( json.sizeAttenuation !== undefined ) material.sizeAttenuation = json.sizeAttenuation; // maps if ( json.map !== undefined ) material.map = getTexture( json.map ); if ( json.matcap !== undefined ) material.matcap = getTexture( json.matcap ); if ( json.alphaMap !== undefined ) material.alphaMap = getTexture( json.alphaMap ); if ( json.bumpMap !== undefined ) material.bumpMap = getTexture( json.bumpMap ); if ( json.bumpScale !== undefined ) material.bumpScale = json.bumpScale; if ( json.normalMap !== undefined ) material.normalMap = getTexture( json.normalMap ); if ( json.normalMapType !== undefined ) material.normalMapType = json.normalMapType; if ( json.normalScale !== undefined ) { let normalScale = json.normalScale; if ( Array.isArray( normalScale ) === false ) { // Blender exporter used to export a scalar. See #7459 normalScale = [ normalScale, normalScale ]; } material.normalScale = new Vector2().fromArray( normalScale ); } if ( json.displacementMap !== undefined ) material.displacementMap = getTexture( json.displacementMap ); if ( json.displacementScale !== undefined ) material.displacementScale = json.displacementScale; if ( json.displacementBias !== undefined ) material.displacementBias = json.displacementBias; if ( json.roughnessMap !== undefined ) material.roughnessMap = getTexture( json.roughnessMap ); if ( json.metalnessMap !== undefined ) material.metalnessMap = getTexture( json.metalnessMap ); if ( json.emissiveMap !== undefined ) material.emissiveMap = getTexture( json.emissiveMap ); if ( json.emissiveIntensity !== undefined ) material.emissiveIntensity = json.emissiveIntensity; if ( json.specularMap !== undefined ) material.specularMap = getTexture( json.specularMap ); if ( json.specularIntensityMap !== undefined ) material.specularIntensityMap = getTexture( json.specularIntensityMap ); if ( json.specularTintMap !== undefined ) material.specularTintMap = getTexture( json.specularTintMap ); if ( json.envMap !== undefined ) material.envMap = getTexture( json.envMap ); if ( json.envMapIntensity !== undefined ) material.envMapIntensity = json.envMapIntensity; if ( json.reflectivity !== undefined ) material.reflectivity = json.reflectivity; if ( json.refractionRatio !== undefined ) material.refractionRatio = json.refractionRatio; if ( json.lightMap !== undefined ) material.lightMap = getTexture( json.lightMap ); if ( json.lightMapIntensity !== undefined ) material.lightMapIntensity = json.lightMapIntensity; if ( json.aoMap !== undefined ) material.aoMap = getTexture( json.aoMap ); if ( json.aoMapIntensity !== undefined ) material.aoMapIntensity = json.aoMapIntensity; if ( json.gradientMap !== undefined ) material.gradientMap = getTexture( json.gradientMap ); if ( json.clearcoatMap !== undefined ) material.clearcoatMap = getTexture( json.clearcoatMap ); if ( json.clearcoatRoughnessMap !== undefined ) material.clearcoatRoughnessMap = getTexture( json.clearcoatRoughnessMap ); if ( json.clearcoatNormalMap !== undefined ) material.clearcoatNormalMap = getTexture( json.clearcoatNormalMap ); if ( json.clearcoatNormalScale !== undefined ) material.clearcoatNormalScale = new Vector2().fromArray( json.clearcoatNormalScale ); if ( json.transmissionMap !== undefined ) material.transmissionMap = getTexture( json.transmissionMap ); if ( json.thicknessMap !== undefined ) material.thicknessMap = getTexture( json.thicknessMap ); return material; } setTextures( value ) { this.textures = value; return this; } } class LoaderUtils { static decodeText( array ) { if ( typeof TextDecoder !== 'undefined' ) { return new TextDecoder().decode( array ); } // Avoid the String.fromCharCode.apply(null, array) shortcut, which // throws a "maximum call stack size exceeded" error for large arrays. let s = ''; for ( let i = 0, il = array.length; i < il; i ++ ) { // Implicitly assumes little-endian. s += String.fromCharCode( array[ i ] ); } try { // merges multi-byte utf-8 characters. return decodeURIComponent( escape( s ) ); } catch ( e ) { // see #16358 return s; } } static extractUrlBase( url ) { const index = url.lastIndexOf( '/' ); if ( index === - 1 ) return './'; return url.substr( 0, index + 1 ); } } class InstancedBufferGeometry extends BufferGeometry { constructor() { super(); this.type = 'InstancedBufferGeometry'; this.instanceCount = Infinity; } copy( source ) { super.copy( source ); this.instanceCount = source.instanceCount; return this; } clone() { return new this.constructor().copy( this ); } toJSON() { const data = super.toJSON( this ); data.instanceCount = this.instanceCount; data.isInstancedBufferGeometry = true; return data; } } InstancedBufferGeometry.prototype.isInstancedBufferGeometry = true; class BufferGeometryLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { const scope = this; const loader = new FileLoader( scope.manager ); loader.setPath( scope.path ); loader.setRequestHeader( scope.requestHeader ); loader.setWithCredentials( scope.withCredentials ); loader.load( url, function ( text ) { try { onLoad( scope.parse( JSON.parse( text ) ) ); } catch ( e ) { if ( onError ) { onError( e ); } else { console.error( e ); } scope.manager.itemError( url ); } }, onProgress, onError ); } parse( json ) { const interleavedBufferMap = {}; const arrayBufferMap = {}; function getInterleavedBuffer( json, uuid ) { if ( interleavedBufferMap[ uuid ] !== undefined ) return interleavedBufferMap[ uuid ]; const interleavedBuffers = json.interleavedBuffers; const interleavedBuffer = interleavedBuffers[ uuid ]; const buffer = getArrayBuffer( json, interleavedBuffer.buffer ); const array = getTypedArray( interleavedBuffer.type, buffer ); const ib = new InterleavedBuffer( array, interleavedBuffer.stride ); ib.uuid = interleavedBuffer.uuid; interleavedBufferMap[ uuid ] = ib; return ib; } function getArrayBuffer( json, uuid ) { if ( arrayBufferMap[ uuid ] !== undefined ) return arrayBufferMap[ uuid ]; const arrayBuffers = json.arrayBuffers; const arrayBuffer = arrayBuffers[ uuid ]; const ab = new Uint32Array( arrayBuffer ).buffer; arrayBufferMap[ uuid ] = ab; return ab; } const geometry = json.isInstancedBufferGeometry ? new InstancedBufferGeometry() : new BufferGeometry(); const index = json.data.index; if ( index !== undefined ) { const typedArray = getTypedArray( index.type, index.array ); geometry.setIndex( new BufferAttribute( typedArray, 1 ) ); } const attributes = json.data.attributes; for ( const key in attributes ) { const attribute = attributes[ key ]; let bufferAttribute; if ( attribute.isInterleavedBufferAttribute ) { const interleavedBuffer = getInterleavedBuffer( json.data, attribute.data ); bufferAttribute = new InterleavedBufferAttribute( interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized ); } else { const typedArray = getTypedArray( attribute.type, attribute.array ); const bufferAttributeConstr = attribute.isInstancedBufferAttribute ? InstancedBufferAttribute : BufferAttribute; bufferAttribute = new bufferAttributeConstr( typedArray, attribute.itemSize, attribute.normalized ); } if ( attribute.name !== undefined ) bufferAttribute.name = attribute.name; if ( attribute.usage !== undefined ) bufferAttribute.setUsage( attribute.usage ); if ( attribute.updateRange !== undefined ) { bufferAttribute.updateRange.offset = attribute.updateRange.offset; bufferAttribute.updateRange.count = attribute.updateRange.count; } geometry.setAttribute( key, bufferAttribute ); } const morphAttributes = json.data.morphAttributes; if ( morphAttributes ) { for ( const key in morphAttributes ) { const attributeArray = morphAttributes[ key ]; const array = []; for ( let i = 0, il = attributeArray.length; i < il; i ++ ) { const attribute = attributeArray[ i ]; let bufferAttribute; if ( attribute.isInterleavedBufferAttribute ) { const interleavedBuffer = getInterleavedBuffer( json.data, attribute.data ); bufferAttribute = new InterleavedBufferAttribute( interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized ); } else { const typedArray = getTypedArray( attribute.type, attribute.array ); bufferAttribute = new BufferAttribute( typedArray, attribute.itemSize, attribute.normalized ); } if ( attribute.name !== undefined ) bufferAttribute.name = attribute.name; array.push( bufferAttribute ); } geometry.morphAttributes[ key ] = array; } } const morphTargetsRelative = json.data.morphTargetsRelative; if ( morphTargetsRelative ) { geometry.morphTargetsRelative = true; } const groups = json.data.groups || json.data.drawcalls || json.data.offsets; if ( groups !== undefined ) { for ( let i = 0, n = groups.length; i !== n; ++ i ) { const group = groups[ i ]; geometry.addGroup( group.start, group.count, group.materialIndex ); } } const boundingSphere = json.data.boundingSphere; if ( boundingSphere !== undefined ) { const center = new Vector3(); if ( boundingSphere.center !== undefined ) { center.fromArray( boundingSphere.center ); } geometry.boundingSphere = new Sphere( center, boundingSphere.radius ); } if ( json.name ) geometry.name = json.name; if ( json.userData ) geometry.userData = json.userData; return geometry; } } class ObjectLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { const scope = this; const path = ( this.path === '' ) ? LoaderUtils.extractUrlBase( url ) : this.path; this.resourcePath = this.resourcePath || path; const loader = new FileLoader( this.manager ); loader.setPath( this.path ); loader.setRequestHeader( this.requestHeader ); loader.setWithCredentials( this.withCredentials ); loader.load( url, function ( text ) { let json = null; try { json = JSON.parse( text ); } catch ( error ) { if ( onError !== undefined ) onError( error ); console.error( 'THREE:ObjectLoader: Can\'t parse ' + url + '.', error.message ); return; } const metadata = json.metadata; if ( metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry' ) { console.error( 'THREE.ObjectLoader: Can\'t load ' + url ); return; } scope.parse( json, onLoad ); }, onProgress, onError ); } async loadAsync( url, onProgress ) { const scope = this; const path = ( this.path === '' ) ? LoaderUtils.extractUrlBase( url ) : this.path; this.resourcePath = this.resourcePath || path; const loader = new FileLoader( this.manager ); loader.setPath( this.path ); loader.setRequestHeader( this.requestHeader ); loader.setWithCredentials( this.withCredentials ); const text = await loader.loadAsync( url, onProgress ); const json = JSON.parse( text ); const metadata = json.metadata; if ( metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry' ) { throw new Error( 'THREE.ObjectLoader: Can\'t load ' + url ); } return await scope.parseAsync( json ); } parse( json, onLoad ) { const animations = this.parseAnimations( json.animations ); const shapes = this.parseShapes( json.shapes ); const geometries = this.parseGeometries( json.geometries, shapes ); const images = this.parseImages( json.images, function () { if ( onLoad !== undefined ) onLoad( object ); } ); const textures = this.parseTextures( json.textures, images ); const materials = this.parseMaterials( json.materials, textures ); const object = this.parseObject( json.object, geometries, materials, textures, animations ); const skeletons = this.parseSkeletons( json.skeletons, object ); this.bindSkeletons( object, skeletons ); // if ( onLoad !== undefined ) { let hasImages = false; for ( const uuid in images ) { if ( images[ uuid ] instanceof HTMLImageElement ) { hasImages = true; break; } } if ( hasImages === false ) onLoad( object ); } return object; } async parseAsync( json ) { const animations = this.parseAnimations( json.animations ); const shapes = this.parseShapes( json.shapes ); const geometries = this.parseGeometries( json.geometries, shapes ); const images = await this.parseImagesAsync( json.images ); const textures = this.parseTextures( json.textures, images ); const materials = this.parseMaterials( json.materials, textures ); const object = this.parseObject( json.object, geometries, materials, textures, animations ); const skeletons = this.parseSkeletons( json.skeletons, object ); this.bindSkeletons( object, skeletons ); return object; } parseShapes( json ) { const shapes = {}; if ( json !== undefined ) { for ( let i = 0, l = json.length; i < l; i ++ ) { const shape = new Shape().fromJSON( json[ i ] ); shapes[ shape.uuid ] = shape; } } return shapes; } parseSkeletons( json, object ) { const skeletons = {}; const bones = {}; // generate bone lookup table object.traverse( function ( child ) { if ( child.isBone ) bones[ child.uuid ] = child; } ); // create skeletons if ( json !== undefined ) { for ( let i = 0, l = json.length; i < l; i ++ ) { const skeleton = new Skeleton().fromJSON( json[ i ], bones ); skeletons[ skeleton.uuid ] = skeleton; } } return skeletons; } parseGeometries( json, shapes ) { const geometries = {}; if ( json !== undefined ) { const bufferGeometryLoader = new BufferGeometryLoader(); for ( let i = 0, l = json.length; i < l; i ++ ) { let geometry; const data = json[ i ]; switch ( data.type ) { case 'BufferGeometry': case 'InstancedBufferGeometry': geometry = bufferGeometryLoader.parse( data ); break; case 'Geometry': console.error( 'THREE.ObjectLoader: The legacy Geometry type is no longer supported.' ); break; default: if ( data.type in Geometries ) { geometry = Geometries[ data.type ].fromJSON( data, shapes ); } else { console.warn( `THREE.ObjectLoader: Unsupported geometry type "${ data.type }"` ); } } geometry.uuid = data.uuid; if ( data.name !== undefined ) geometry.name = data.name; if ( geometry.isBufferGeometry === true && data.userData !== undefined ) geometry.userData = data.userData; geometries[ data.uuid ] = geometry; } } return geometries; } parseMaterials( json, textures ) { const cache = {}; // MultiMaterial const materials = {}; if ( json !== undefined ) { const loader = new MaterialLoader(); loader.setTextures( textures ); for ( let i = 0, l = json.length; i < l; i ++ ) { const data = json[ i ]; if ( data.type === 'MultiMaterial' ) { // Deprecated const array = []; for ( let j = 0; j < data.materials.length; j ++ ) { const material = data.materials[ j ]; if ( cache[ material.uuid ] === undefined ) { cache[ material.uuid ] = loader.parse( material ); } array.push( cache[ material.uuid ] ); } materials[ data.uuid ] = array; } else { if ( cache[ data.uuid ] === undefined ) { cache[ data.uuid ] = loader.parse( data ); } materials[ data.uuid ] = cache[ data.uuid ]; } } } return materials; } parseAnimations( json ) { const animations = {}; if ( json !== undefined ) { for ( let i = 0; i < json.length; i ++ ) { const data = json[ i ]; const clip = AnimationClip.parse( data ); animations[ clip.uuid ] = clip; } } return animations; } parseImages( json, onLoad ) { const scope = this; const images = {}; let loader; function loadImage( url ) { scope.manager.itemStart( url ); return loader.load( url, function () { scope.manager.itemEnd( url ); }, undefined, function () { scope.manager.itemError( url ); scope.manager.itemEnd( url ); } ); } function deserializeImage( image ) { if ( typeof image === 'string' ) { const url = image; const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( url ) ? url : scope.resourcePath + url; return loadImage( path ); } else { if ( image.data ) { return { data: getTypedArray( image.type, image.data ), width: image.width, height: image.height }; } else { return null; } } } if ( json !== undefined && json.length > 0 ) { const manager = new LoadingManager( onLoad ); loader = new ImageLoader( manager ); loader.setCrossOrigin( this.crossOrigin ); for ( let i = 0, il = json.length; i < il; i ++ ) { const image = json[ i ]; const url = image.url; if ( Array.isArray( url ) ) { // load array of images e.g CubeTexture images[ image.uuid ] = []; for ( let j = 0, jl = url.length; j < jl; j ++ ) { const currentUrl = url[ j ]; const deserializedImage = deserializeImage( currentUrl ); if ( deserializedImage !== null ) { if ( deserializedImage instanceof HTMLImageElement ) { images[ image.uuid ].push( deserializedImage ); } else { // special case: handle array of data textures for cube textures images[ image.uuid ].push( new DataTexture( deserializedImage.data, deserializedImage.width, deserializedImage.height ) ); } } } } else { // load single image const deserializedImage = deserializeImage( image.url ); if ( deserializedImage !== null ) { images[ image.uuid ] = deserializedImage; } } } } return images; } async parseImagesAsync( json ) { const scope = this; const images = {}; let loader; async function deserializeImage( image ) { if ( typeof image === 'string' ) { const url = image; const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( url ) ? url : scope.resourcePath + url; return await loader.loadAsync( path ); } else { if ( image.data ) { return { data: getTypedArray( image.type, image.data ), width: image.width, height: image.height }; } else { return null; } } } if ( json !== undefined && json.length > 0 ) { loader = new ImageLoader( this.manager ); loader.setCrossOrigin( this.crossOrigin ); for ( let i = 0, il = json.length; i < il; i ++ ) { const image = json[ i ]; const url = image.url; if ( Array.isArray( url ) ) { // load array of images e.g CubeTexture images[ image.uuid ] = []; for ( let j = 0, jl = url.length; j < jl; j ++ ) { const currentUrl = url[ j ]; const deserializedImage = await deserializeImage( currentUrl ); if ( deserializedImage !== null ) { if ( deserializedImage instanceof HTMLImageElement ) { images[ image.uuid ].push( deserializedImage ); } else { // special case: handle array of data textures for cube textures images[ image.uuid ].push( new DataTexture( deserializedImage.data, deserializedImage.width, deserializedImage.height ) ); } } } } else { // load single image const deserializedImage = await deserializeImage( image.url ); if ( deserializedImage !== null ) { images[ image.uuid ] = deserializedImage; } } } } return images; } parseTextures( json, images ) { function parseConstant( value, type ) { if ( typeof value === 'number' ) return value; console.warn( 'THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value ); return type[ value ]; } const textures = {}; if ( json !== undefined ) { for ( let i = 0, l = json.length; i < l; i ++ ) { const data = json[ i ]; if ( data.image === undefined ) { console.warn( 'THREE.ObjectLoader: No "image" specified for', data.uuid ); } if ( images[ data.image ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined image', data.image ); } let texture; const image = images[ data.image ]; if ( Array.isArray( image ) ) { texture = new CubeTexture( image ); if ( image.length === 6 ) texture.needsUpdate = true; } else { if ( image && image.data ) { texture = new DataTexture( image.data, image.width, image.height ); } else { texture = new Texture( image ); } if ( image ) texture.needsUpdate = true; // textures can have undefined image data } texture.uuid = data.uuid; if ( data.name !== undefined ) texture.name = data.name; if ( data.mapping !== undefined ) texture.mapping = parseConstant( data.mapping, TEXTURE_MAPPING ); if ( data.offset !== undefined ) texture.offset.fromArray( data.offset ); if ( data.repeat !== undefined ) texture.repeat.fromArray( data.repeat ); if ( data.center !== undefined ) texture.center.fromArray( data.center ); if ( data.rotation !== undefined ) texture.rotation = data.rotation; if ( data.wrap !== undefined ) { texture.wrapS = parseConstant( data.wrap[ 0 ], TEXTURE_WRAPPING ); texture.wrapT = parseConstant( data.wrap[ 1 ], TEXTURE_WRAPPING ); } if ( data.format !== undefined ) texture.format = data.format; if ( data.type !== undefined ) texture.type = data.type; if ( data.encoding !== undefined ) texture.encoding = data.encoding; if ( data.minFilter !== undefined ) texture.minFilter = parseConstant( data.minFilter, TEXTURE_FILTER ); if ( data.magFilter !== undefined ) texture.magFilter = parseConstant( data.magFilter, TEXTURE_FILTER ); if ( data.anisotropy !== undefined ) texture.anisotropy = data.anisotropy; if ( data.flipY !== undefined ) texture.flipY = data.flipY; if ( data.premultiplyAlpha !== undefined ) texture.premultiplyAlpha = data.premultiplyAlpha; if ( data.unpackAlignment !== undefined ) texture.unpackAlignment = data.unpackAlignment; textures[ data.uuid ] = texture; } } return textures; } parseObject( data, geometries, materials, textures, animations ) { let object; function getGeometry( name ) { if ( geometries[ name ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined geometry', name ); } return geometries[ name ]; } function getMaterial( name ) { if ( name === undefined ) return undefined; if ( Array.isArray( name ) ) { const array = []; for ( let i = 0, l = name.length; i < l; i ++ ) { const uuid = name[ i ]; if ( materials[ uuid ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined material', uuid ); } array.push( materials[ uuid ] ); } return array; } if ( materials[ name ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined material', name ); } return materials[ name ]; } function getTexture( uuid ) { if ( textures[ uuid ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined texture', uuid ); } return textures[ uuid ]; } let geometry, material; switch ( data.type ) { case 'Scene': object = new Scene(); if ( data.background !== undefined ) { if ( Number.isInteger( data.background ) ) { object.background = new Color( data.background ); } else { object.background = getTexture( data.background ); } } if ( data.environment !== undefined ) { object.environment = getTexture( data.environment ); } if ( data.fog !== undefined ) { if ( data.fog.type === 'Fog' ) { object.fog = new Fog( data.fog.color, data.fog.near, data.fog.far ); } else if ( data.fog.type === 'FogExp2' ) { object.fog = new FogExp2( data.fog.color, data.fog.density ); } } break; case 'PerspectiveCamera': object = new PerspectiveCamera( data.fov, data.aspect, data.near, data.far ); if ( data.focus !== undefined ) object.focus = data.focus; if ( data.zoom !== undefined ) object.zoom = data.zoom; if ( data.filmGauge !== undefined ) object.filmGauge = data.filmGauge; if ( data.filmOffset !== undefined ) object.filmOffset = data.filmOffset; if ( data.view !== undefined ) object.view = Object.assign( {}, data.view ); break; case 'OrthographicCamera': object = new OrthographicCamera( data.left, data.right, data.top, data.bottom, data.near, data.far ); if ( data.zoom !== undefined ) object.zoom = data.zoom; if ( data.view !== undefined ) object.view = Object.assign( {}, data.view ); break; case 'AmbientLight': object = new AmbientLight( data.color, data.intensity ); break; case 'DirectionalLight': object = new DirectionalLight( data.color, data.intensity ); break; case 'PointLight': object = new PointLight( data.color, data.intensity, data.distance, data.decay ); break; case 'RectAreaLight': object = new RectAreaLight( data.color, data.intensity, data.width, data.height ); break; case 'SpotLight': object = new SpotLight( data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay ); break; case 'HemisphereLight': object = new HemisphereLight( data.color, data.groundColor, data.intensity ); break; case 'LightProbe': object = new LightProbe().fromJSON( data ); break; case 'SkinnedMesh': geometry = getGeometry( data.geometry ); material = getMaterial( data.material ); object = new SkinnedMesh( geometry, material ); if ( data.bindMode !== undefined ) object.bindMode = data.bindMode; if ( data.bindMatrix !== undefined ) object.bindMatrix.fromArray( data.bindMatrix ); if ( data.skeleton !== undefined ) object.skeleton = data.skeleton; break; case 'Mesh': geometry = getGeometry( data.geometry ); material = getMaterial( data.material ); object = new Mesh( geometry, material ); break; case 'InstancedMesh': geometry = getGeometry( data.geometry ); material = getMaterial( data.material ); const count = data.count; const instanceMatrix = data.instanceMatrix; const instanceColor = data.instanceColor; object = new InstancedMesh( geometry, material, count ); object.instanceMatrix = new InstancedBufferAttribute( new Float32Array( instanceMatrix.array ), 16 ); if ( instanceColor !== undefined ) object.instanceColor = new InstancedBufferAttribute( new Float32Array( instanceColor.array ), instanceColor.itemSize ); break; case 'LOD': object = new LOD(); break; case 'Line': object = new Line( getGeometry( data.geometry ), getMaterial( data.material ) ); break; case 'LineLoop': object = new LineLoop( getGeometry( data.geometry ), getMaterial( data.material ) ); break; case 'LineSegments': object = new LineSegments( getGeometry( data.geometry ), getMaterial( data.material ) ); break; case 'PointCloud': case 'Points': object = new Points( getGeometry( data.geometry ), getMaterial( data.material ) ); break; case 'Sprite': object = new Sprite( getMaterial( data.material ) ); break; case 'Group': object = new Group(); break; case 'Bone': object = new Bone(); break; default: object = new Object3D(); } object.uuid = data.uuid; if ( data.name !== undefined ) object.name = data.name; if ( data.matrix !== undefined ) { object.matrix.fromArray( data.matrix ); if ( data.matrixAutoUpdate !== undefined ) object.matrixAutoUpdate = data.matrixAutoUpdate; if ( object.matrixAutoUpdate ) object.matrix.decompose( object.position, object.quaternion, object.scale ); } else { if ( data.position !== undefined ) object.position.fromArray( data.position ); if ( data.rotation !== undefined ) object.rotation.fromArray( data.rotation ); if ( data.quaternion !== undefined ) object.quaternion.fromArray( data.quaternion ); if ( data.scale !== undefined ) object.scale.fromArray( data.scale ); } if ( data.castShadow !== undefined ) object.castShadow = data.castShadow; if ( data.receiveShadow !== undefined ) object.receiveShadow = data.receiveShadow; if ( data.shadow ) { if ( data.shadow.bias !== undefined ) object.shadow.bias = data.shadow.bias; if ( data.shadow.normalBias !== undefined ) object.shadow.normalBias = data.shadow.normalBias; if ( data.shadow.radius !== undefined ) object.shadow.radius = data.shadow.radius; if ( data.shadow.mapSize !== undefined ) object.shadow.mapSize.fromArray( data.shadow.mapSize ); if ( data.shadow.camera !== undefined ) object.shadow.camera = this.parseObject( data.shadow.camera ); } if ( data.visible !== undefined ) object.visible = data.visible; if ( data.frustumCulled !== undefined ) object.frustumCulled = data.frustumCulled; if ( data.renderOrder !== undefined ) object.renderOrder = data.renderOrder; if ( data.userData !== undefined ) object.userData = data.userData; if ( data.layers !== undefined ) object.layers.mask = data.layers; if ( data.children !== undefined ) { const children = data.children; for ( let i = 0; i < children.length; i ++ ) { object.add( this.parseObject( children[ i ], geometries, materials, textures, animations ) ); } } if ( data.animations !== undefined ) { const objectAnimations = data.animations; for ( let i = 0; i < objectAnimations.length; i ++ ) { const uuid = objectAnimations[ i ]; object.animations.push( animations[ uuid ] ); } } if ( data.type === 'LOD' ) { if ( data.autoUpdate !== undefined ) object.autoUpdate = data.autoUpdate; const levels = data.levels; for ( let l = 0; l < levels.length; l ++ ) { const level = levels[ l ]; const child = object.getObjectByProperty( 'uuid', level.object ); if ( child !== undefined ) { object.addLevel( child, level.distance ); } } } return object; } bindSkeletons( object, skeletons ) { if ( Object.keys( skeletons ).length === 0 ) return; object.traverse( function ( child ) { if ( child.isSkinnedMesh === true && child.skeleton !== undefined ) { const skeleton = skeletons[ child.skeleton ]; if ( skeleton === undefined ) { console.warn( 'THREE.ObjectLoader: No skeleton found with UUID:', child.skeleton ); } else { child.bind( skeleton, child.bindMatrix ); } } } ); } /* DEPRECATED */ setTexturePath( value ) { console.warn( 'THREE.ObjectLoader: .setTexturePath() has been renamed to .setResourcePath().' ); return this.setResourcePath( value ); } } const TEXTURE_MAPPING = { UVMapping: UVMapping, CubeReflectionMapping: CubeReflectionMapping, CubeRefractionMapping: CubeRefractionMapping, EquirectangularReflectionMapping: EquirectangularReflectionMapping, EquirectangularRefractionMapping: EquirectangularRefractionMapping, CubeUVReflectionMapping: CubeUVReflectionMapping, CubeUVRefractionMapping: CubeUVRefractionMapping }; const TEXTURE_WRAPPING = { RepeatWrapping: RepeatWrapping, ClampToEdgeWrapping: ClampToEdgeWrapping, MirroredRepeatWrapping: MirroredRepeatWrapping }; const TEXTURE_FILTER = { NearestFilter: NearestFilter, NearestMipmapNearestFilter: NearestMipmapNearestFilter, NearestMipmapLinearFilter: NearestMipmapLinearFilter, LinearFilter: LinearFilter, LinearMipmapNearestFilter: LinearMipmapNearestFilter, LinearMipmapLinearFilter: LinearMipmapLinearFilter }; class ImageBitmapLoader extends Loader { constructor( manager ) { super( manager ); if ( typeof createImageBitmap === 'undefined' ) { console.warn( 'THREE.ImageBitmapLoader: createImageBitmap() not supported.' ); } if ( typeof fetch === 'undefined' ) { console.warn( 'THREE.ImageBitmapLoader: fetch() not supported.' ); } this.options = { premultiplyAlpha: 'none' }; } setOptions( options ) { this.options = options; return this; } load( url, onLoad, onProgress, onError ) { if ( url === undefined ) url = ''; if ( this.path !== undefined ) url = this.path + url; url = this.manager.resolveURL( url ); const scope = this; const cached = Cache.get( url ); if ( cached !== undefined ) { scope.manager.itemStart( url ); setTimeout( function () { if ( onLoad ) onLoad( cached ); scope.manager.itemEnd( url ); }, 0 ); return cached; } const fetchOptions = {}; fetchOptions.credentials = ( this.crossOrigin === 'anonymous' ) ? 'same-origin' : 'include'; fetchOptions.headers = this.requestHeader; fetch( url, fetchOptions ).then( function ( res ) { return res.blob(); } ).then( function ( blob ) { return createImageBitmap( blob, Object.assign( scope.options, { colorSpaceConversion: 'none' } ) ); } ).then( function ( imageBitmap ) { Cache.add( url, imageBitmap ); if ( onLoad ) onLoad( imageBitmap ); scope.manager.itemEnd( url ); } ).catch( function ( e ) { if ( onError ) onError( e ); scope.manager.itemError( url ); scope.manager.itemEnd( url ); } ); scope.manager.itemStart( url ); } } ImageBitmapLoader.prototype.isImageBitmapLoader = true; class ShapePath { constructor() { this.type = 'ShapePath'; this.color = new Color(); this.subPaths = []; this.currentPath = null; } moveTo( x, y ) { this.currentPath = new Path(); this.subPaths.push( this.currentPath ); this.currentPath.moveTo( x, y ); return this; } lineTo( x, y ) { this.currentPath.lineTo( x, y ); return this; } quadraticCurveTo( aCPx, aCPy, aX, aY ) { this.currentPath.quadraticCurveTo( aCPx, aCPy, aX, aY ); return this; } bezierCurveTo( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) { this.currentPath.bezierCurveTo( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ); return this; } splineThru( pts ) { this.currentPath.splineThru( pts ); return this; } toShapes( isCCW, noHoles ) { function toShapesNoHoles( inSubpaths ) { const shapes = []; for ( let i = 0, l = inSubpaths.length; i < l; i ++ ) { const tmpPath = inSubpaths[ i ]; const tmpShape = new Shape(); tmpShape.curves = tmpPath.curves; shapes.push( tmpShape ); } return shapes; } function isPointInsidePolygon( inPt, inPolygon ) { const polyLen = inPolygon.length; // inPt on polygon contour => immediate success or // toggling of inside/outside at every single! intersection point of an edge // with the horizontal line through inPt, left of inPt // not counting lowerY endpoints of edges and whole edges on that line let inside = false; for ( let p = polyLen - 1, q = 0; q < polyLen; p = q ++ ) { let edgeLowPt = inPolygon[ p ]; let edgeHighPt = inPolygon[ q ]; let edgeDx = edgeHighPt.x - edgeLowPt.x; let edgeDy = edgeHighPt.y - edgeLowPt.y; if ( Math.abs( edgeDy ) > Number.EPSILON ) { // not parallel if ( edgeDy < 0 ) { edgeLowPt = inPolygon[ q ]; edgeDx = - edgeDx; edgeHighPt = inPolygon[ p ]; edgeDy = - edgeDy; } if ( ( inPt.y < edgeLowPt.y ) || ( inPt.y > edgeHighPt.y ) ) continue; if ( inPt.y === edgeLowPt.y ) { if ( inPt.x === edgeLowPt.x ) return true; // inPt is on contour ? // continue; // no intersection or edgeLowPt => doesn't count !!! } else { const perpEdge = edgeDy * ( inPt.x - edgeLowPt.x ) - edgeDx * ( inPt.y - edgeLowPt.y ); if ( perpEdge === 0 ) return true; // inPt is on contour ? if ( perpEdge < 0 ) continue; inside = ! inside; // true intersection left of inPt } } else { // parallel or collinear if ( inPt.y !== edgeLowPt.y ) continue; // parallel // edge lies on the same horizontal line as inPt if ( ( ( edgeHighPt.x <= inPt.x ) && ( inPt.x <= edgeLowPt.x ) ) || ( ( edgeLowPt.x <= inPt.x ) && ( inPt.x <= edgeHighPt.x ) ) ) return true; // inPt: Point on contour ! // continue; } } return inside; } const isClockWise = ShapeUtils.isClockWise; const subPaths = this.subPaths; if ( subPaths.length === 0 ) return []; if ( noHoles === true ) return toShapesNoHoles( subPaths ); let solid, tmpPath, tmpShape; const shapes = []; if ( subPaths.length === 1 ) { tmpPath = subPaths[ 0 ]; tmpShape = new Shape(); tmpShape.curves = tmpPath.curves; shapes.push( tmpShape ); return shapes; } let holesFirst = ! isClockWise( subPaths[ 0 ].getPoints() ); holesFirst = isCCW ? ! holesFirst : holesFirst; // console.log("Holes first", holesFirst); const betterShapeHoles = []; const newShapes = []; let newShapeHoles = []; let mainIdx = 0; let tmpPoints; newShapes[ mainIdx ] = undefined; newShapeHoles[ mainIdx ] = []; for ( let i = 0, l = subPaths.length; i < l; i ++ ) { tmpPath = subPaths[ i ]; tmpPoints = tmpPath.getPoints(); solid = isClockWise( tmpPoints ); solid = isCCW ? ! solid : solid; if ( solid ) { if ( ( ! holesFirst ) && ( newShapes[ mainIdx ] ) ) mainIdx ++; newShapes[ mainIdx ] = { s: new Shape(), p: tmpPoints }; newShapes[ mainIdx ].s.curves = tmpPath.curves; if ( holesFirst ) mainIdx ++; newShapeHoles[ mainIdx ] = []; //console.log('cw', i); } else { newShapeHoles[ mainIdx ].push( { h: tmpPath, p: tmpPoints[ 0 ] } ); //console.log('ccw', i); } } // only Holes? -> probably all Shapes with wrong orientation if ( ! newShapes[ 0 ] ) return toShapesNoHoles( subPaths ); if ( newShapes.length > 1 ) { let ambiguous = false; const toChange = []; for ( let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) { betterShapeHoles[ sIdx ] = []; } for ( let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) { const sho = newShapeHoles[ sIdx ]; for ( let hIdx = 0; hIdx < sho.length; hIdx ++ ) { const ho = sho[ hIdx ]; let hole_unassigned = true; for ( let s2Idx = 0; s2Idx < newShapes.length; s2Idx ++ ) { if ( isPointInsidePolygon( ho.p, newShapes[ s2Idx ].p ) ) { if ( sIdx !== s2Idx ) toChange.push( { froms: sIdx, tos: s2Idx, hole: hIdx } ); if ( hole_unassigned ) { hole_unassigned = false; betterShapeHoles[ s2Idx ].push( ho ); } else { ambiguous = true; } } } if ( hole_unassigned ) { betterShapeHoles[ sIdx ].push( ho ); } } } // console.log("ambiguous: ", ambiguous); if ( toChange.length > 0 ) { // console.log("to change: ", toChange); if ( ! ambiguous ) newShapeHoles = betterShapeHoles; } } let tmpHoles; for ( let i = 0, il = newShapes.length; i < il; i ++ ) { tmpShape = newShapes[ i ].s; shapes.push( tmpShape ); tmpHoles = newShapeHoles[ i ]; for ( let j = 0, jl = tmpHoles.length; j < jl; j ++ ) { tmpShape.holes.push( tmpHoles[ j ].h ); } } //console.log("shape", shapes); return shapes; } } class Font { constructor( data ) { this.type = 'Font'; this.data = data; } generateShapes( text, size = 100 ) { const shapes = []; const paths = createPaths( text, size, this.data ); for ( let p = 0, pl = paths.length; p < pl; p ++ ) { Array.prototype.push.apply( shapes, paths[ p ].toShapes() ); } return shapes; } } function createPaths( text, size, data ) { const chars = Array.from( text ); const scale = size / data.resolution; const line_height = ( data.boundingBox.yMax - data.boundingBox.yMin + data.underlineThickness ) * scale; const paths = []; let offsetX = 0, offsetY = 0; for ( let i = 0; i < chars.length; i ++ ) { const char = chars[ i ]; if ( char === '\n' ) { offsetX = 0; offsetY -= line_height; } else { const ret = createPath( char, scale, offsetX, offsetY, data ); offsetX += ret.offsetX; paths.push( ret.path ); } } return paths; } function createPath( char, scale, offsetX, offsetY, data ) { const glyph = data.glyphs[ char ] || data.glyphs[ '?' ]; if ( ! glyph ) { console.error( 'THREE.Font: character "' + char + '" does not exists in font family ' + data.familyName + '.' ); return; } const path = new ShapePath(); let x, y, cpx, cpy, cpx1, cpy1, cpx2, cpy2; if ( glyph.o ) { const outline = glyph._cachedOutline || ( glyph._cachedOutline = glyph.o.split( ' ' ) ); for ( let i = 0, l = outline.length; i < l; ) { const action = outline[ i ++ ]; switch ( action ) { case 'm': // moveTo x = outline[ i ++ ] * scale + offsetX; y = outline[ i ++ ] * scale + offsetY; path.moveTo( x, y ); break; case 'l': // lineTo x = outline[ i ++ ] * scale + offsetX; y = outline[ i ++ ] * scale + offsetY; path.lineTo( x, y ); break; case 'q': // quadraticCurveTo cpx = outline[ i ++ ] * scale + offsetX; cpy = outline[ i ++ ] * scale + offsetY; cpx1 = outline[ i ++ ] * scale + offsetX; cpy1 = outline[ i ++ ] * scale + offsetY; path.quadraticCurveTo( cpx1, cpy1, cpx, cpy ); break; case 'b': // bezierCurveTo cpx = outline[ i ++ ] * scale + offsetX; cpy = outline[ i ++ ] * scale + offsetY; cpx1 = outline[ i ++ ] * scale + offsetX; cpy1 = outline[ i ++ ] * scale + offsetY; cpx2 = outline[ i ++ ] * scale + offsetX; cpy2 = outline[ i ++ ] * scale + offsetY; path.bezierCurveTo( cpx1, cpy1, cpx2, cpy2, cpx, cpy ); break; } } } return { offsetX: glyph.ha * scale, path: path }; } Font.prototype.isFont = true; class FontLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { const scope = this; const loader = new FileLoader( this.manager ); loader.setPath( this.path ); loader.setRequestHeader( this.requestHeader ); loader.setWithCredentials( scope.withCredentials ); loader.load( url, function ( text ) { let json; try { json = JSON.parse( text ); } catch ( e ) { console.warn( 'THREE.FontLoader: typeface.js support is being deprecated. Use typeface.json instead.' ); json = JSON.parse( text.substring( 65, text.length - 2 ) ); } const font = scope.parse( json ); if ( onLoad ) onLoad( font ); }, onProgress, onError ); } parse( json ) { return new Font( json ); } } let _context; const AudioContext = { getContext: function () { if ( _context === undefined ) { _context = new ( window.AudioContext || window.webkitAudioContext )(); } return _context; }, setContext: function ( value ) { _context = value; } }; class AudioLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { const scope = this; const loader = new FileLoader( this.manager ); loader.setResponseType( 'arraybuffer' ); loader.setPath( this.path ); loader.setRequestHeader( this.requestHeader ); loader.setWithCredentials( this.withCredentials ); loader.load( url, function ( buffer ) { try { // Create a copy of the buffer. The `decodeAudioData` method // detaches the buffer when complete, preventing reuse. const bufferCopy = buffer.slice( 0 ); const context = AudioContext.getContext(); context.decodeAudioData( bufferCopy, function ( audioBuffer ) { onLoad( audioBuffer ); } ); } catch ( e ) { if ( onError ) { onError( e ); } else { console.error( e ); } scope.manager.itemError( url ); } }, onProgress, onError ); } } class HemisphereLightProbe extends LightProbe { constructor( skyColor, groundColor, intensity = 1 ) { super( undefined, intensity ); const color1 = new Color().set( skyColor ); const color2 = new Color().set( groundColor ); const sky = new Vector3( color1.r, color1.g, color1.b ); const ground = new Vector3( color2.r, color2.g, color2.b ); // without extra factor of PI in the shader, should = 1 / Math.sqrt( Math.PI ); const c0 = Math.sqrt( Math.PI ); const c1 = c0 * Math.sqrt( 0.75 ); this.sh.coefficients[ 0 ].copy( sky ).add( ground ).multiplyScalar( c0 ); this.sh.coefficients[ 1 ].copy( sky ).sub( ground ).multiplyScalar( c1 ); } } HemisphereLightProbe.prototype.isHemisphereLightProbe = true; class AmbientLightProbe extends LightProbe { constructor( color, intensity = 1 ) { super( undefined, intensity ); const color1 = new Color().set( color ); // without extra factor of PI in the shader, would be 2 / Math.sqrt( Math.PI ); this.sh.coefficients[ 0 ].set( color1.r, color1.g, color1.b ).multiplyScalar( 2 * Math.sqrt( Math.PI ) ); } } AmbientLightProbe.prototype.isAmbientLightProbe = true; const _eyeRight = /*@__PURE__*/ new Matrix4(); const _eyeLeft = /*@__PURE__*/ new Matrix4(); class StereoCamera { constructor() { this.type = 'StereoCamera'; this.aspect = 1; this.eyeSep = 0.064; this.cameraL = new PerspectiveCamera(); this.cameraL.layers.enable( 1 ); this.cameraL.matrixAutoUpdate = false; this.cameraR = new PerspectiveCamera(); this.cameraR.layers.enable( 2 ); this.cameraR.matrixAutoUpdate = false; this._cache = { focus: null, fov: null, aspect: null, near: null, far: null, zoom: null, eyeSep: null }; } update( camera ) { const cache = this._cache; const needsUpdate = cache.focus !== camera.focus || cache.fov !== camera.fov || cache.aspect !== camera.aspect * this.aspect || cache.near !== camera.near || cache.far !== camera.far || cache.zoom !== camera.zoom || cache.eyeSep !== this.eyeSep; if ( needsUpdate ) { cache.focus = camera.focus; cache.fov = camera.fov; cache.aspect = camera.aspect * this.aspect; cache.near = camera.near; cache.far = camera.far; cache.zoom = camera.zoom; cache.eyeSep = this.eyeSep; // Off-axis stereoscopic effect based on // http://paulbourke.net/stereographics/stereorender/ const projectionMatrix = camera.projectionMatrix.clone(); const eyeSepHalf = cache.eyeSep / 2; const eyeSepOnProjection = eyeSepHalf * cache.near / cache.focus; const ymax = ( cache.near * Math.tan( DEG2RAD * cache.fov * 0.5 ) ) / cache.zoom; let xmin, xmax; // translate xOffset _eyeLeft.elements[ 12 ] = - eyeSepHalf; _eyeRight.elements[ 12 ] = eyeSepHalf; // for left eye xmin = - ymax * cache.aspect + eyeSepOnProjection; xmax = ymax * cache.aspect + eyeSepOnProjection; projectionMatrix.elements[ 0 ] = 2 * cache.near / ( xmax - xmin ); projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin ); this.cameraL.projectionMatrix.copy( projectionMatrix ); // for right eye xmin = - ymax * cache.aspect - eyeSepOnProjection; xmax = ymax * cache.aspect - eyeSepOnProjection; projectionMatrix.elements[ 0 ] = 2 * cache.near / ( xmax - xmin ); projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin ); this.cameraR.projectionMatrix.copy( projectionMatrix ); } this.cameraL.matrixWorld.copy( camera.matrixWorld ).multiply( _eyeLeft ); this.cameraR.matrixWorld.copy( camera.matrixWorld ).multiply( _eyeRight ); } } class Clock { constructor( autoStart = true ) { this.autoStart = autoStart; this.startTime = 0; this.oldTime = 0; this.elapsedTime = 0; this.running = false; } start() { this.startTime = now(); this.oldTime = this.startTime; this.elapsedTime = 0; this.running = true; } stop() { this.getElapsedTime(); this.running = false; this.autoStart = false; } getElapsedTime() { this.getDelta(); return this.elapsedTime; } getDelta() { let diff = 0; if ( this.autoStart && ! this.running ) { this.start(); return 0; } if ( this.running ) { const newTime = now(); diff = ( newTime - this.oldTime ) / 1000; this.oldTime = newTime; this.elapsedTime += diff; } return diff; } } function now() { return ( typeof performance === 'undefined' ? Date : performance ).now(); // see #10732 } const _position$1 = /*@__PURE__*/ new Vector3(); const _quaternion$1 = /*@__PURE__*/ new Quaternion(); const _scale$1 = /*@__PURE__*/ new Vector3(); const _orientation$1 = /*@__PURE__*/ new Vector3(); class AudioListener extends Object3D { constructor() { super(); this.type = 'AudioListener'; this.context = AudioContext.getContext(); this.gain = this.context.createGain(); this.gain.connect( this.context.destination ); this.filter = null; this.timeDelta = 0; // private this._clock = new Clock(); } getInput() { return this.gain; } removeFilter() { if ( this.filter !== null ) { this.gain.disconnect( this.filter ); this.filter.disconnect( this.context.destination ); this.gain.connect( this.context.destination ); this.filter = null; } return this; } getFilter() { return this.filter; } setFilter( value ) { if ( this.filter !== null ) { this.gain.disconnect( this.filter ); this.filter.disconnect( this.context.destination ); } else { this.gain.disconnect( this.context.destination ); } this.filter = value; this.gain.connect( this.filter ); this.filter.connect( this.context.destination ); return this; } getMasterVolume() { return this.gain.gain.value; } setMasterVolume( value ) { this.gain.gain.setTargetAtTime( value, this.context.currentTime, 0.01 ); return this; } updateMatrixWorld( force ) { super.updateMatrixWorld( force ); const listener = this.context.listener; const up = this.up; this.timeDelta = this._clock.getDelta(); this.matrixWorld.decompose( _position$1, _quaternion$1, _scale$1 ); _orientation$1.set( 0, 0, - 1 ).applyQuaternion( _quaternion$1 ); if ( listener.positionX ) { // code path for Chrome (see #14393) const endTime = this.context.currentTime + this.timeDelta; listener.positionX.linearRampToValueAtTime( _position$1.x, endTime ); listener.positionY.linearRampToValueAtTime( _position$1.y, endTime ); listener.positionZ.linearRampToValueAtTime( _position$1.z, endTime ); listener.forwardX.linearRampToValueAtTime( _orientation$1.x, endTime ); listener.forwardY.linearRampToValueAtTime( _orientation$1.y, endTime ); listener.forwardZ.linearRampToValueAtTime( _orientation$1.z, endTime ); listener.upX.linearRampToValueAtTime( up.x, endTime ); listener.upY.linearRampToValueAtTime( up.y, endTime ); listener.upZ.linearRampToValueAtTime( up.z, endTime ); } else { listener.setPosition( _position$1.x, _position$1.y, _position$1.z ); listener.setOrientation( _orientation$1.x, _orientation$1.y, _orientation$1.z, up.x, up.y, up.z ); } } } class Audio extends Object3D { constructor( listener ) { super(); this.type = 'Audio'; this.listener = listener; this.context = listener.context; this.gain = this.context.createGain(); this.gain.connect( listener.getInput() ); this.autoplay = false; this.buffer = null; this.detune = 0; this.loop = false; this.loopStart = 0; this.loopEnd = 0; this.offset = 0; this.duration = undefined; this.playbackRate = 1; this.isPlaying = false; this.hasPlaybackControl = true; this.source = null; this.sourceType = 'empty'; this._startedAt = 0; this._progress = 0; this._connected = false; this.filters = []; } getOutput() { return this.gain; } setNodeSource( audioNode ) { this.hasPlaybackControl = false; this.sourceType = 'audioNode'; this.source = audioNode; this.connect(); return this; } setMediaElementSource( mediaElement ) { this.hasPlaybackControl = false; this.sourceType = 'mediaNode'; this.source = this.context.createMediaElementSource( mediaElement ); this.connect(); return this; } setMediaStreamSource( mediaStream ) { this.hasPlaybackControl = false; this.sourceType = 'mediaStreamNode'; this.source = this.context.createMediaStreamSource( mediaStream ); this.connect(); return this; } setBuffer( audioBuffer ) { this.buffer = audioBuffer; this.sourceType = 'buffer'; if ( this.autoplay ) this.play(); return this; } play( delay = 0 ) { if ( this.isPlaying === true ) { console.warn( 'THREE.Audio: Audio is already playing.' ); return; } if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this._startedAt = this.context.currentTime + delay; const source = this.context.createBufferSource(); source.buffer = this.buffer; source.loop = this.loop; source.loopStart = this.loopStart; source.loopEnd = this.loopEnd; source.onended = this.onEnded.bind( this ); source.start( this._startedAt, this._progress + this.offset, this.duration ); this.isPlaying = true; this.source = source; this.setDetune( this.detune ); this.setPlaybackRate( this.playbackRate ); return this.connect(); } pause() { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } if ( this.isPlaying === true ) { // update current progress this._progress += Math.max( this.context.currentTime - this._startedAt, 0 ) * this.playbackRate; if ( this.loop === true ) { // ensure _progress does not exceed duration with looped audios this._progress = this._progress % ( this.duration || this.buffer.duration ); } this.source.stop(); this.source.onended = null; this.isPlaying = false; } return this; } stop() { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this._progress = 0; this.source.stop(); this.source.onended = null; this.isPlaying = false; return this; } connect() { if ( this.filters.length > 0 ) { this.source.connect( this.filters[ 0 ] ); for ( let i = 1, l = this.filters.length; i < l; i ++ ) { this.filters[ i - 1 ].connect( this.filters[ i ] ); } this.filters[ this.filters.length - 1 ].connect( this.getOutput() ); } else { this.source.connect( this.getOutput() ); } this._connected = true; return this; } disconnect() { if ( this.filters.length > 0 ) { this.source.disconnect( this.filters[ 0 ] ); for ( let i = 1, l = this.filters.length; i < l; i ++ ) { this.filters[ i - 1 ].disconnect( this.filters[ i ] ); } this.filters[ this.filters.length - 1 ].disconnect( this.getOutput() ); } else { this.source.disconnect( this.getOutput() ); } this._connected = false; return this; } getFilters() { return this.filters; } setFilters( value ) { if ( ! value ) value = []; if ( this._connected === true ) { this.disconnect(); this.filters = value.slice(); this.connect(); } else { this.filters = value.slice(); } return this; } setDetune( value ) { this.detune = value; if ( this.source.detune === undefined ) return; // only set detune when available if ( this.isPlaying === true ) { this.source.detune.setTargetAtTime( this.detune, this.context.currentTime, 0.01 ); } return this; } getDetune() { return this.detune; } getFilter() { return this.getFilters()[ 0 ]; } setFilter( filter ) { return this.setFilters( filter ? [ filter ] : [] ); } setPlaybackRate( value ) { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this.playbackRate = value; if ( this.isPlaying === true ) { this.source.playbackRate.setTargetAtTime( this.playbackRate, this.context.currentTime, 0.01 ); } return this; } getPlaybackRate() { return this.playbackRate; } onEnded() { this.isPlaying = false; } getLoop() { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return false; } return this.loop; } setLoop( value ) { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this.loop = value; if ( this.isPlaying === true ) { this.source.loop = this.loop; } return this; } setLoopStart( value ) { this.loopStart = value; return this; } setLoopEnd( value ) { this.loopEnd = value; return this; } getVolume() { return this.gain.gain.value; } setVolume( value ) { this.gain.gain.setTargetAtTime( value, this.context.currentTime, 0.01 ); return this; } } const _position = /*@__PURE__*/ new Vector3(); const _quaternion = /*@__PURE__*/ new Quaternion(); const _scale = /*@__PURE__*/ new Vector3(); const _orientation = /*@__PURE__*/ new Vector3(); class PositionalAudio extends Audio { constructor( listener ) { super( listener ); this.panner = this.context.createPanner(); this.panner.panningModel = 'HRTF'; this.panner.connect( this.gain ); } getOutput() { return this.panner; } getRefDistance() { return this.panner.refDistance; } setRefDistance( value ) { this.panner.refDistance = value; return this; } getRolloffFactor() { return this.panner.rolloffFactor; } setRolloffFactor( value ) { this.panner.rolloffFactor = value; return this; } getDistanceModel() { return this.panner.distanceModel; } setDistanceModel( value ) { this.panner.distanceModel = value; return this; } getMaxDistance() { return this.panner.maxDistance; } setMaxDistance( value ) { this.panner.maxDistance = value; return this; } setDirectionalCone( coneInnerAngle, coneOuterAngle, coneOuterGain ) { this.panner.coneInnerAngle = coneInnerAngle; this.panner.coneOuterAngle = coneOuterAngle; this.panner.coneOuterGain = coneOuterGain; return this; } updateMatrixWorld( force ) { super.updateMatrixWorld( force ); if ( this.hasPlaybackControl === true && this.isPlaying === false ) return; this.matrixWorld.decompose( _position, _quaternion, _scale ); _orientation.set( 0, 0, 1 ).applyQuaternion( _quaternion ); const panner = this.panner; if ( panner.positionX ) { // code path for Chrome and Firefox (see #14393) const endTime = this.context.currentTime + this.listener.timeDelta; panner.positionX.linearRampToValueAtTime( _position.x, endTime ); panner.positionY.linearRampToValueAtTime( _position.y, endTime ); panner.positionZ.linearRampToValueAtTime( _position.z, endTime ); panner.orientationX.linearRampToValueAtTime( _orientation.x, endTime ); panner.orientationY.linearRampToValueAtTime( _orientation.y, endTime ); panner.orientationZ.linearRampToValueAtTime( _orientation.z, endTime ); } else { panner.setPosition( _position.x, _position.y, _position.z ); panner.setOrientation( _orientation.x, _orientation.y, _orientation.z ); } } } class AudioAnalyser { constructor( audio, fftSize = 2048 ) { this.analyser = audio.context.createAnalyser(); this.analyser.fftSize = fftSize; this.data = new Uint8Array( this.analyser.frequencyBinCount ); audio.getOutput().connect( this.analyser ); } getFrequencyData() { this.analyser.getByteFrequencyData( this.data ); return this.data; } getAverageFrequency() { let value = 0; const data = this.getFrequencyData(); for ( let i = 0; i < data.length; i ++ ) { value += data[ i ]; } return value / data.length; } } class PropertyMixer { constructor( binding, typeName, valueSize ) { this.binding = binding; this.valueSize = valueSize; let mixFunction, mixFunctionAdditive, setIdentity; // buffer layout: [ incoming | accu0 | accu1 | orig | addAccu | (optional work) ] // // interpolators can use .buffer as their .result // the data then goes to 'incoming' // // 'accu0' and 'accu1' are used frame-interleaved for // the cumulative result and are compared to detect // changes // // 'orig' stores the original state of the property // // 'add' is used for additive cumulative results // // 'work' is optional and is only present for quaternion types. It is used // to store intermediate quaternion multiplication results switch ( typeName ) { case 'quaternion': mixFunction = this._slerp; mixFunctionAdditive = this._slerpAdditive; setIdentity = this._setAdditiveIdentityQuaternion; this.buffer = new Float64Array( valueSize * 6 ); this._workIndex = 5; break; case 'string': case 'bool': mixFunction = this._select; // Use the regular mix function and for additive on these types, // additive is not relevant for non-numeric types mixFunctionAdditive = this._select; setIdentity = this._setAdditiveIdentityOther; this.buffer = new Array( valueSize * 5 ); break; default: mixFunction = this._lerp; mixFunctionAdditive = this._lerpAdditive; setIdentity = this._setAdditiveIdentityNumeric; this.buffer = new Float64Array( valueSize * 5 ); } this._mixBufferRegion = mixFunction; this._mixBufferRegionAdditive = mixFunctionAdditive; this._setIdentity = setIdentity; this._origIndex = 3; this._addIndex = 4; this.cumulativeWeight = 0; this.cumulativeWeightAdditive = 0; this.useCount = 0; this.referenceCount = 0; } // accumulate data in the 'incoming' region into 'accu' accumulate( accuIndex, weight ) { // note: happily accumulating nothing when weight = 0, the caller knows // the weight and shouldn't have made the call in the first place const buffer = this.buffer, stride = this.valueSize, offset = accuIndex * stride + stride; let currentWeight = this.cumulativeWeight; if ( currentWeight === 0 ) { // accuN := incoming * weight for ( let i = 0; i !== stride; ++ i ) { buffer[ offset + i ] = buffer[ i ]; } currentWeight = weight; } else { // accuN := accuN + incoming * weight currentWeight += weight; const mix = weight / currentWeight; this._mixBufferRegion( buffer, offset, 0, mix, stride ); } this.cumulativeWeight = currentWeight; } // accumulate data in the 'incoming' region into 'add' accumulateAdditive( weight ) { const buffer = this.buffer, stride = this.valueSize, offset = stride * this._addIndex; if ( this.cumulativeWeightAdditive === 0 ) { // add = identity this._setIdentity(); } // add := add + incoming * weight this._mixBufferRegionAdditive( buffer, offset, 0, weight, stride ); this.cumulativeWeightAdditive += weight; } // apply the state of 'accu' to the binding when accus differ apply( accuIndex ) { const stride = this.valueSize, buffer = this.buffer, offset = accuIndex * stride + stride, weight = this.cumulativeWeight, weightAdditive = this.cumulativeWeightAdditive, binding = this.binding; this.cumulativeWeight = 0; this.cumulativeWeightAdditive = 0; if ( weight < 1 ) { // accuN := accuN + original * ( 1 - cumulativeWeight ) const originalValueOffset = stride * this._origIndex; this._mixBufferRegion( buffer, offset, originalValueOffset, 1 - weight, stride ); } if ( weightAdditive > 0 ) { // accuN := accuN + additive accuN this._mixBufferRegionAdditive( buffer, offset, this._addIndex * stride, 1, stride ); } for ( let i = stride, e = stride + stride; i !== e; ++ i ) { if ( buffer[ i ] !== buffer[ i + stride ] ) { // value has changed -> update scene graph binding.setValue( buffer, offset ); break; } } } // remember the state of the bound property and copy it to both accus saveOriginalState() { const binding = this.binding; const buffer = this.buffer, stride = this.valueSize, originalValueOffset = stride * this._origIndex; binding.getValue( buffer, originalValueOffset ); // accu[0..1] := orig -- initially detect changes against the original for ( let i = stride, e = originalValueOffset; i !== e; ++ i ) { buffer[ i ] = buffer[ originalValueOffset + ( i % stride ) ]; } // Add to identity for additive this._setIdentity(); this.cumulativeWeight = 0; this.cumulativeWeightAdditive = 0; } // apply the state previously taken via 'saveOriginalState' to the binding restoreOriginalState() { const originalValueOffset = this.valueSize * 3; this.binding.setValue( this.buffer, originalValueOffset ); } _setAdditiveIdentityNumeric() { const startIndex = this._addIndex * this.valueSize; const endIndex = startIndex + this.valueSize; for ( let i = startIndex; i < endIndex; i ++ ) { this.buffer[ i ] = 0; } } _setAdditiveIdentityQuaternion() { this._setAdditiveIdentityNumeric(); this.buffer[ this._addIndex * this.valueSize + 3 ] = 1; } _setAdditiveIdentityOther() { const startIndex = this._origIndex * this.valueSize; const targetIndex = this._addIndex * this.valueSize; for ( let i = 0; i < this.valueSize; i ++ ) { this.buffer[ targetIndex + i ] = this.buffer[ startIndex + i ]; } } // mix functions _select( buffer, dstOffset, srcOffset, t, stride ) { if ( t >= 0.5 ) { for ( let i = 0; i !== stride; ++ i ) { buffer[ dstOffset + i ] = buffer[ srcOffset + i ]; } } } _slerp( buffer, dstOffset, srcOffset, t ) { Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t ); } _slerpAdditive( buffer, dstOffset, srcOffset, t, stride ) { const workOffset = this._workIndex * stride; // Store result in intermediate buffer offset Quaternion.multiplyQuaternionsFlat( buffer, workOffset, buffer, dstOffset, buffer, srcOffset ); // Slerp to the intermediate result Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, workOffset, t ); } _lerp( buffer, dstOffset, srcOffset, t, stride ) { const s = 1 - t; for ( let i = 0; i !== stride; ++ i ) { const j = dstOffset + i; buffer[ j ] = buffer[ j ] * s + buffer[ srcOffset + i ] * t; } } _lerpAdditive( buffer, dstOffset, srcOffset, t, stride ) { for ( let i = 0; i !== stride; ++ i ) { const j = dstOffset + i; buffer[ j ] = buffer[ j ] + buffer[ srcOffset + i ] * t; } } } // Characters [].:/ are reserved for track binding syntax. const _RESERVED_CHARS_RE = '\\[\\]\\.:\\/'; const _reservedRe = new RegExp( '[' + _RESERVED_CHARS_RE + ']', 'g' ); // Attempts to allow node names from any language. ES5's `\w` regexp matches // only latin characters, and the unicode \p{L} is not yet supported. So // instead, we exclude reserved characters and match everything else. const _wordChar = '[^' + _RESERVED_CHARS_RE + ']'; const _wordCharOrDot = '[^' + _RESERVED_CHARS_RE.replace( '\\.', '' ) + ']'; // Parent directories, delimited by '/' or ':'. Currently unused, but must // be matched to parse the rest of the track name. const _directoryRe = /((?:WC+[\/:])*)/.source.replace( 'WC', _wordChar ); // Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'. const _nodeRe = /(WCOD+)?/.source.replace( 'WCOD', _wordCharOrDot ); // Object on target node, and accessor. May not contain reserved // characters. Accessor may contain any character except closing bracket. const _objectRe = /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace( 'WC', _wordChar ); // Property and accessor. May not contain reserved characters. Accessor may // contain any non-bracket characters. const _propertyRe = /\.(WC+)(?:\[(.+)\])?/.source.replace( 'WC', _wordChar ); const _trackRe = new RegExp( '' + '^' + _directoryRe + _nodeRe + _objectRe + _propertyRe + '$' ); const _supportedObjectNames = [ 'material', 'materials', 'bones' ]; class Composite { constructor( targetGroup, path, optionalParsedPath ) { const parsedPath = optionalParsedPath || PropertyBinding.parseTrackName( path ); this._targetGroup = targetGroup; this._bindings = targetGroup.subscribe_( path, parsedPath ); } getValue( array, offset ) { this.bind(); // bind all binding const firstValidIndex = this._targetGroup.nCachedObjects_, binding = this._bindings[ firstValidIndex ]; // and only call .getValue on the first if ( binding !== undefined ) binding.getValue( array, offset ); } setValue( array, offset ) { const bindings = this._bindings; for ( let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { bindings[ i ].setValue( array, offset ); } } bind() { const bindings = this._bindings; for ( let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { bindings[ i ].bind(); } } unbind() { const bindings = this._bindings; for ( let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { bindings[ i ].unbind(); } } } // Note: This class uses a State pattern on a per-method basis: // 'bind' sets 'this.getValue' / 'setValue' and shadows the // prototype version of these methods with one that represents // the bound state. When the property is not found, the methods // become no-ops. class PropertyBinding { constructor( rootNode, path, parsedPath ) { this.path = path; this.parsedPath = parsedPath || PropertyBinding.parseTrackName( path ); this.node = PropertyBinding.findNode( rootNode, this.parsedPath.nodeName ) || rootNode; this.rootNode = rootNode; // initial state of these methods that calls 'bind' this.getValue = this._getValue_unbound; this.setValue = this._setValue_unbound; } static create( root, path, parsedPath ) { if ( ! ( root && root.isAnimationObjectGroup ) ) { return new PropertyBinding( root, path, parsedPath ); } else { return new PropertyBinding.Composite( root, path, parsedPath ); } } /** * Replaces spaces with underscores and removes unsupported characters from * node names, to ensure compatibility with parseTrackName(). * * @param {string} name Node name to be sanitized. * @return {string} */ static sanitizeNodeName( name ) { return name.replace( /\s/g, '_' ).replace( _reservedRe, '' ); } static parseTrackName( trackName ) { const matches = _trackRe.exec( trackName ); if ( ! matches ) { throw new Error( 'PropertyBinding: Cannot parse trackName: ' + trackName ); } const results = { // directoryName: matches[ 1 ], // (tschw) currently unused nodeName: matches[ 2 ], objectName: matches[ 3 ], objectIndex: matches[ 4 ], propertyName: matches[ 5 ], // required propertyIndex: matches[ 6 ] }; const lastDot = results.nodeName && results.nodeName.lastIndexOf( '.' ); if ( lastDot !== undefined && lastDot !== - 1 ) { const objectName = results.nodeName.substring( lastDot + 1 ); // Object names must be checked against an allowlist. Otherwise, there // is no way to parse 'foo.bar.baz': 'baz' must be a property, but // 'bar' could be the objectName, or part of a nodeName (which can // include '.' characters). if ( _supportedObjectNames.indexOf( objectName ) !== - 1 ) { results.nodeName = results.nodeName.substring( 0, lastDot ); results.objectName = objectName; } } if ( results.propertyName === null || results.propertyName.length === 0 ) { throw new Error( 'PropertyBinding: can not parse propertyName from trackName: ' + trackName ); } return results; } static findNode( root, nodeName ) { if ( ! nodeName || nodeName === '' || nodeName === '.' || nodeName === - 1 || nodeName === root.name || nodeName === root.uuid ) { return root; } // search into skeleton bones. if ( root.skeleton ) { const bone = root.skeleton.getBoneByName( nodeName ); if ( bone !== undefined ) { return bone; } } // search into node subtree. if ( root.children ) { const searchNodeSubtree = function ( children ) { for ( let i = 0; i < children.length; i ++ ) { const childNode = children[ i ]; if ( childNode.name === nodeName || childNode.uuid === nodeName ) { return childNode; } const result = searchNodeSubtree( childNode.children ); if ( result ) return result; } return null; }; const subTreeNode = searchNodeSubtree( root.children ); if ( subTreeNode ) { return subTreeNode; } } return null; } // these are used to "bind" a nonexistent property _getValue_unavailable() {} _setValue_unavailable() {} // Getters _getValue_direct( buffer, offset ) { buffer[ offset ] = this.targetObject[ this.propertyName ]; } _getValue_array( buffer, offset ) { const source = this.resolvedProperty; for ( let i = 0, n = source.length; i !== n; ++ i ) { buffer[ offset ++ ] = source[ i ]; } } _getValue_arrayElement( buffer, offset ) { buffer[ offset ] = this.resolvedProperty[ this.propertyIndex ]; } _getValue_toArray( buffer, offset ) { this.resolvedProperty.toArray( buffer, offset ); } // Direct _setValue_direct( buffer, offset ) { this.targetObject[ this.propertyName ] = buffer[ offset ]; } _setValue_direct_setNeedsUpdate( buffer, offset ) { this.targetObject[ this.propertyName ] = buffer[ offset ]; this.targetObject.needsUpdate = true; } _setValue_direct_setMatrixWorldNeedsUpdate( buffer, offset ) { this.targetObject[ this.propertyName ] = buffer[ offset ]; this.targetObject.matrixWorldNeedsUpdate = true; } // EntireArray _setValue_array( buffer, offset ) { const dest = this.resolvedProperty; for ( let i = 0, n = dest.length; i !== n; ++ i ) { dest[ i ] = buffer[ offset ++ ]; } } _setValue_array_setNeedsUpdate( buffer, offset ) { const dest = this.resolvedProperty; for ( let i = 0, n = dest.length; i !== n; ++ i ) { dest[ i ] = buffer[ offset ++ ]; } this.targetObject.needsUpdate = true; } _setValue_array_setMatrixWorldNeedsUpdate( buffer, offset ) { const dest = this.resolvedProperty; for ( let i = 0, n = dest.length; i !== n; ++ i ) { dest[ i ] = buffer[ offset ++ ]; } this.targetObject.matrixWorldNeedsUpdate = true; } // ArrayElement _setValue_arrayElement( buffer, offset ) { this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; } _setValue_arrayElement_setNeedsUpdate( buffer, offset ) { this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; this.targetObject.needsUpdate = true; } _setValue_arrayElement_setMatrixWorldNeedsUpdate( buffer, offset ) { this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; this.targetObject.matrixWorldNeedsUpdate = true; } // HasToFromArray _setValue_fromArray( buffer, offset ) { this.resolvedProperty.fromArray( buffer, offset ); } _setValue_fromArray_setNeedsUpdate( buffer, offset ) { this.resolvedProperty.fromArray( buffer, offset ); this.targetObject.needsUpdate = true; } _setValue_fromArray_setMatrixWorldNeedsUpdate( buffer, offset ) { this.resolvedProperty.fromArray( buffer, offset ); this.targetObject.matrixWorldNeedsUpdate = true; } _getValue_unbound( targetArray, offset ) { this.bind(); this.getValue( targetArray, offset ); } _setValue_unbound( sourceArray, offset ) { this.bind(); this.setValue( sourceArray, offset ); } // create getter / setter pair for a property in the scene graph bind() { let targetObject = this.node; const parsedPath = this.parsedPath; const objectName = parsedPath.objectName; const propertyName = parsedPath.propertyName; let propertyIndex = parsedPath.propertyIndex; if ( ! targetObject ) { targetObject = PropertyBinding.findNode( this.rootNode, parsedPath.nodeName ) || this.rootNode; this.node = targetObject; } // set fail state so we can just 'return' on error this.getValue = this._getValue_unavailable; this.setValue = this._setValue_unavailable; // ensure there is a value node if ( ! targetObject ) { console.error( 'THREE.PropertyBinding: Trying to update node for track: ' + this.path + ' but it wasn\'t found.' ); return; } if ( objectName ) { let objectIndex = parsedPath.objectIndex; // special cases were we need to reach deeper into the hierarchy to get the face materials.... switch ( objectName ) { case 'materials': if ( ! targetObject.material ) { console.error( 'THREE.PropertyBinding: Can not bind to material as node does not have a material.', this ); return; } if ( ! targetObject.material.materials ) { console.error( 'THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this ); return; } targetObject = targetObject.material.materials; break; case 'bones': if ( ! targetObject.skeleton ) { console.error( 'THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this ); return; } // potential future optimization: skip this if propertyIndex is already an integer // and convert the integer string to a true integer. targetObject = targetObject.skeleton.bones; // support resolving morphTarget names into indices. for ( let i = 0; i < targetObject.length; i ++ ) { if ( targetObject[ i ].name === objectIndex ) { objectIndex = i; break; } } break; default: if ( targetObject[ objectName ] === undefined ) { console.error( 'THREE.PropertyBinding: Can not bind to objectName of node undefined.', this ); return; } targetObject = targetObject[ objectName ]; } if ( objectIndex !== undefined ) { if ( targetObject[ objectIndex ] === undefined ) { console.error( 'THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject ); return; } targetObject = targetObject[ objectIndex ]; } } // resolve property const nodeProperty = targetObject[ propertyName ]; if ( nodeProperty === undefined ) { const nodeName = parsedPath.nodeName; console.error( 'THREE.PropertyBinding: Trying to update property for track: ' + nodeName + '.' + propertyName + ' but it wasn\'t found.', targetObject ); return; } // determine versioning scheme let versioning = this.Versioning.None; this.targetObject = targetObject; if ( targetObject.needsUpdate !== undefined ) { // material versioning = this.Versioning.NeedsUpdate; } else if ( targetObject.matrixWorldNeedsUpdate !== undefined ) { // node transform versioning = this.Versioning.MatrixWorldNeedsUpdate; } // determine how the property gets bound let bindingType = this.BindingType.Direct; if ( propertyIndex !== undefined ) { // access a sub element of the property array (only primitives are supported right now) if ( propertyName === 'morphTargetInfluences' ) { // potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer. // support resolving morphTarget names into indices. if ( ! targetObject.geometry ) { console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this ); return; } if ( targetObject.geometry.isBufferGeometry ) { if ( ! targetObject.geometry.morphAttributes ) { console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this ); return; } if ( targetObject.morphTargetDictionary[ propertyIndex ] !== undefined ) { propertyIndex = targetObject.morphTargetDictionary[ propertyIndex ]; } } else { console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences on THREE.Geometry. Use THREE.BufferGeometry instead.', this ); return; } } bindingType = this.BindingType.ArrayElement; this.resolvedProperty = nodeProperty; this.propertyIndex = propertyIndex; } else if ( nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined ) { // must use copy for Object3D.Euler/Quaternion bindingType = this.BindingType.HasFromToArray; this.resolvedProperty = nodeProperty; } else if ( Array.isArray( nodeProperty ) ) { bindingType = this.BindingType.EntireArray; this.resolvedProperty = nodeProperty; } else { this.propertyName = propertyName; } // select getter / setter this.getValue = this.GetterByBindingType[ bindingType ]; this.setValue = this.SetterByBindingTypeAndVersioning[ bindingType ][ versioning ]; } unbind() { this.node = null; // back to the prototype version of getValue / setValue // note: avoiding to mutate the shape of 'this' via 'delete' this.getValue = this._getValue_unbound; this.setValue = this._setValue_unbound; } } PropertyBinding.Composite = Composite; PropertyBinding.prototype.BindingType = { Direct: 0, EntireArray: 1, ArrayElement: 2, HasFromToArray: 3 }; PropertyBinding.prototype.Versioning = { None: 0, NeedsUpdate: 1, MatrixWorldNeedsUpdate: 2 }; PropertyBinding.prototype.GetterByBindingType = [ PropertyBinding.prototype._getValue_direct, PropertyBinding.prototype._getValue_array, PropertyBinding.prototype._getValue_arrayElement, PropertyBinding.prototype._getValue_toArray, ]; PropertyBinding.prototype.SetterByBindingTypeAndVersioning = [ [ // Direct PropertyBinding.prototype._setValue_direct, PropertyBinding.prototype._setValue_direct_setNeedsUpdate, PropertyBinding.prototype._setValue_direct_setMatrixWorldNeedsUpdate, ], [ // EntireArray PropertyBinding.prototype._setValue_array, PropertyBinding.prototype._setValue_array_setNeedsUpdate, PropertyBinding.prototype._setValue_array_setMatrixWorldNeedsUpdate, ], [ // ArrayElement PropertyBinding.prototype._setValue_arrayElement, PropertyBinding.prototype._setValue_arrayElement_setNeedsUpdate, PropertyBinding.prototype._setValue_arrayElement_setMatrixWorldNeedsUpdate, ], [ // HasToFromArray PropertyBinding.prototype._setValue_fromArray, PropertyBinding.prototype._setValue_fromArray_setNeedsUpdate, PropertyBinding.prototype._setValue_fromArray_setMatrixWorldNeedsUpdate, ] ]; /** * * A group of objects that receives a shared animation state. * * Usage: * * - Add objects you would otherwise pass as 'root' to the * constructor or the .clipAction method of AnimationMixer. * * - Instead pass this object as 'root'. * * - You can also add and remove objects later when the mixer * is running. * * Note: * * Objects of this class appear as one object to the mixer, * so cache control of the individual objects must be done * on the group. * * Limitation: * * - The animated properties must be compatible among the * all objects in the group. * * - A single property can either be controlled through a * target group or directly, but not both. */ class AnimationObjectGroup { constructor() { this.uuid = generateUUID(); // cached objects followed by the active ones this._objects = Array.prototype.slice.call( arguments ); this.nCachedObjects_ = 0; // threshold // note: read by PropertyBinding.Composite const indices = {}; this._indicesByUUID = indices; // for bookkeeping for ( let i = 0, n = arguments.length; i !== n; ++ i ) { indices[ arguments[ i ].uuid ] = i; } this._paths = []; // inside: string this._parsedPaths = []; // inside: { we don't care, here } this._bindings = []; // inside: Array< PropertyBinding > this._bindingsIndicesByPath = {}; // inside: indices in these arrays const scope = this; this.stats = { objects: { get total() { return scope._objects.length; }, get inUse() { return this.total - scope.nCachedObjects_; } }, get bindingsPerObject() { return scope._bindings.length; } }; } add() { const objects = this._objects, indicesByUUID = this._indicesByUUID, paths = this._paths, parsedPaths = this._parsedPaths, bindings = this._bindings, nBindings = bindings.length; let knownObject = undefined, nObjects = objects.length, nCachedObjects = this.nCachedObjects_; for ( let i = 0, n = arguments.length; i !== n; ++ i ) { const object = arguments[ i ], uuid = object.uuid; let index = indicesByUUID[ uuid ]; if ( index === undefined ) { // unknown object -> add it to the ACTIVE region index = nObjects ++; indicesByUUID[ uuid ] = index; objects.push( object ); // accounting is done, now do the same for all bindings for ( let j = 0, m = nBindings; j !== m; ++ j ) { bindings[ j ].push( new PropertyBinding( object, paths[ j ], parsedPaths[ j ] ) ); } } else if ( index < nCachedObjects ) { knownObject = objects[ index ]; // move existing object to the ACTIVE region const firstActiveIndex = -- nCachedObjects, lastCachedObject = objects[ firstActiveIndex ]; indicesByUUID[ lastCachedObject.uuid ] = index; objects[ index ] = lastCachedObject; indicesByUUID[ uuid ] = firstActiveIndex; objects[ firstActiveIndex ] = object; // accounting is done, now do the same for all bindings for ( let j = 0, m = nBindings; j !== m; ++ j ) { const bindingsForPath = bindings[ j ], lastCached = bindingsForPath[ firstActiveIndex ]; let binding = bindingsForPath[ index ]; bindingsForPath[ index ] = lastCached; if ( binding === undefined ) { // since we do not bother to create new bindings // for objects that are cached, the binding may // or may not exist binding = new PropertyBinding( object, paths[ j ], parsedPaths[ j ] ); } bindingsForPath[ firstActiveIndex ] = binding; } } else if ( objects[ index ] !== knownObject ) { console.error( 'THREE.AnimationObjectGroup: Different objects with the same UUID ' + 'detected. Clean the caches or recreate your infrastructure when reloading scenes.' ); } // else the object is already where we want it to be } // for arguments this.nCachedObjects_ = nCachedObjects; } remove() { const objects = this._objects, indicesByUUID = this._indicesByUUID, bindings = this._bindings, nBindings = bindings.length; let nCachedObjects = this.nCachedObjects_; for ( let i = 0, n = arguments.length; i !== n; ++ i ) { const object = arguments[ i ], uuid = object.uuid, index = indicesByUUID[ uuid ]; if ( index !== undefined && index >= nCachedObjects ) { // move existing object into the CACHED region const lastCachedIndex = nCachedObjects ++, firstActiveObject = objects[ lastCachedIndex ]; indicesByUUID[ firstActiveObject.uuid ] = index; objects[ index ] = firstActiveObject; indicesByUUID[ uuid ] = lastCachedIndex; objects[ lastCachedIndex ] = object; // accounting is done, now do the same for all bindings for ( let j = 0, m = nBindings; j !== m; ++ j ) { const bindingsForPath = bindings[ j ], firstActive = bindingsForPath[ lastCachedIndex ], binding = bindingsForPath[ index ]; bindingsForPath[ index ] = firstActive; bindingsForPath[ lastCachedIndex ] = binding; } } } // for arguments this.nCachedObjects_ = nCachedObjects; } // remove & forget uncache() { const objects = this._objects, indicesByUUID = this._indicesByUUID, bindings = this._bindings, nBindings = bindings.length; let nCachedObjects = this.nCachedObjects_, nObjects = objects.length; for ( let i = 0, n = arguments.length; i !== n; ++ i ) { const object = arguments[ i ], uuid = object.uuid, index = indicesByUUID[ uuid ]; if ( index !== undefined ) { delete indicesByUUID[ uuid ]; if ( index < nCachedObjects ) { // object is cached, shrink the CACHED region const firstActiveIndex = -- nCachedObjects, lastCachedObject = objects[ firstActiveIndex ], lastIndex = -- nObjects, lastObject = objects[ lastIndex ]; // last cached object takes this object's place indicesByUUID[ lastCachedObject.uuid ] = index; objects[ index ] = lastCachedObject; // last object goes to the activated slot and pop indicesByUUID[ lastObject.uuid ] = firstActiveIndex; objects[ firstActiveIndex ] = lastObject; objects.pop(); // accounting is done, now do the same for all bindings for ( let j = 0, m = nBindings; j !== m; ++ j ) { const bindingsForPath = bindings[ j ], lastCached = bindingsForPath[ firstActiveIndex ], last = bindingsForPath[ lastIndex ]; bindingsForPath[ index ] = lastCached; bindingsForPath[ firstActiveIndex ] = last; bindingsForPath.pop(); } } else { // object is active, just swap with the last and pop const lastIndex = -- nObjects, lastObject = objects[ lastIndex ]; if ( lastIndex > 0 ) { indicesByUUID[ lastObject.uuid ] = index; } objects[ index ] = lastObject; objects.pop(); // accounting is done, now do the same for all bindings for ( let j = 0, m = nBindings; j !== m; ++ j ) { const bindingsForPath = bindings[ j ]; bindingsForPath[ index ] = bindingsForPath[ lastIndex ]; bindingsForPath.pop(); } } // cached or active } // if object is known } // for arguments this.nCachedObjects_ = nCachedObjects; } // Internal interface used by befriended PropertyBinding.Composite: subscribe_( path, parsedPath ) { // returns an array of bindings for the given path that is changed // according to the contained objects in the group const indicesByPath = this._bindingsIndicesByPath; let index = indicesByPath[ path ]; const bindings = this._bindings; if ( index !== undefined ) return bindings[ index ]; const paths = this._paths, parsedPaths = this._parsedPaths, objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, bindingsForPath = new Array( nObjects ); index = bindings.length; indicesByPath[ path ] = index; paths.push( path ); parsedPaths.push( parsedPath ); bindings.push( bindingsForPath ); for ( let i = nCachedObjects, n = objects.length; i !== n; ++ i ) { const object = objects[ i ]; bindingsForPath[ i ] = new PropertyBinding( object, path, parsedPath ); } return bindingsForPath; } unsubscribe_( path ) { // tells the group to forget about a property path and no longer // update the array previously obtained with 'subscribe_' const indicesByPath = this._bindingsIndicesByPath, index = indicesByPath[ path ]; if ( index !== undefined ) { const paths = this._paths, parsedPaths = this._parsedPaths, bindings = this._bindings, lastBindingsIndex = bindings.length - 1, lastBindings = bindings[ lastBindingsIndex ], lastBindingsPath = path[ lastBindingsIndex ]; indicesByPath[ lastBindingsPath ] = index; bindings[ index ] = lastBindings; bindings.pop(); parsedPaths[ index ] = parsedPaths[ lastBindingsIndex ]; parsedPaths.pop(); paths[ index ] = paths[ lastBindingsIndex ]; paths.pop(); } } } AnimationObjectGroup.prototype.isAnimationObjectGroup = true; class AnimationAction { constructor( mixer, clip, localRoot = null, blendMode = clip.blendMode ) { this._mixer = mixer; this._clip = clip; this._localRoot = localRoot; this.blendMode = blendMode; const tracks = clip.tracks, nTracks = tracks.length, interpolants = new Array( nTracks ); const interpolantSettings = { endingStart: ZeroCurvatureEnding, endingEnd: ZeroCurvatureEnding }; for ( let i = 0; i !== nTracks; ++ i ) { const interpolant = tracks[ i ].createInterpolant( null ); interpolants[ i ] = interpolant; interpolant.settings = interpolantSettings; } this._interpolantSettings = interpolantSettings; this._interpolants = interpolants; // bound by the mixer // inside: PropertyMixer (managed by the mixer) this._propertyBindings = new Array( nTracks ); this._cacheIndex = null; // for the memory manager this._byClipCacheIndex = null; // for the memory manager this._timeScaleInterpolant = null; this._weightInterpolant = null; this.loop = LoopRepeat; this._loopCount = - 1; // global mixer time when the action is to be started // it's set back to 'null' upon start of the action this._startTime = null; // scaled local time of the action // gets clamped or wrapped to 0..clip.duration according to loop this.time = 0; this.timeScale = 1; this._effectiveTimeScale = 1; this.weight = 1; this._effectiveWeight = 1; this.repetitions = Infinity; // no. of repetitions when looping this.paused = false; // true -> zero effective time scale this.enabled = true; // false -> zero effective weight this.clampWhenFinished = false;// keep feeding the last frame? this.zeroSlopeAtStart = true;// for smooth interpolation w/o separate this.zeroSlopeAtEnd = true;// clips for start, loop and end } // State & Scheduling play() { this._mixer._activateAction( this ); return this; } stop() { this._mixer._deactivateAction( this ); return this.reset(); } reset() { this.paused = false; this.enabled = true; this.time = 0; // restart clip this._loopCount = - 1;// forget previous loops this._startTime = null;// forget scheduling return this.stopFading().stopWarping(); } isRunning() { return this.enabled && ! this.paused && this.timeScale !== 0 && this._startTime === null && this._mixer._isActiveAction( this ); } // return true when play has been called isScheduled() { return this._mixer._isActiveAction( this ); } startAt( time ) { this._startTime = time; return this; } setLoop( mode, repetitions ) { this.loop = mode; this.repetitions = repetitions; return this; } // Weight // set the weight stopping any scheduled fading // although .enabled = false yields an effective weight of zero, this // method does *not* change .enabled, because it would be confusing setEffectiveWeight( weight ) { this.weight = weight; // note: same logic as when updated at runtime this._effectiveWeight = this.enabled ? weight : 0; return this.stopFading(); } // return the weight considering fading and .enabled getEffectiveWeight() { return this._effectiveWeight; } fadeIn( duration ) { return this._scheduleFading( duration, 0, 1 ); } fadeOut( duration ) { return this._scheduleFading( duration, 1, 0 ); } crossFadeFrom( fadeOutAction, duration, warp ) { fadeOutAction.fadeOut( duration ); this.fadeIn( duration ); if ( warp ) { const fadeInDuration = this._clip.duration, fadeOutDuration = fadeOutAction._clip.duration, startEndRatio = fadeOutDuration / fadeInDuration, endStartRatio = fadeInDuration / fadeOutDuration; fadeOutAction.warp( 1.0, startEndRatio, duration ); this.warp( endStartRatio, 1.0, duration ); } return this; } crossFadeTo( fadeInAction, duration, warp ) { return fadeInAction.crossFadeFrom( this, duration, warp ); } stopFading() { const weightInterpolant = this._weightInterpolant; if ( weightInterpolant !== null ) { this._weightInterpolant = null; this._mixer._takeBackControlInterpolant( weightInterpolant ); } return this; } // Time Scale Control // set the time scale stopping any scheduled warping // although .paused = true yields an effective time scale of zero, this // method does *not* change .paused, because it would be confusing setEffectiveTimeScale( timeScale ) { this.timeScale = timeScale; this._effectiveTimeScale = this.paused ? 0 : timeScale; return this.stopWarping(); } // return the time scale considering warping and .paused getEffectiveTimeScale() { return this._effectiveTimeScale; } setDuration( duration ) { this.timeScale = this._clip.duration / duration; return this.stopWarping(); } syncWith( action ) { this.time = action.time; this.timeScale = action.timeScale; return this.stopWarping(); } halt( duration ) { return this.warp( this._effectiveTimeScale, 0, duration ); } warp( startTimeScale, endTimeScale, duration ) { const mixer = this._mixer, now = mixer.time, timeScale = this.timeScale; let interpolant = this._timeScaleInterpolant; if ( interpolant === null ) { interpolant = mixer._lendControlInterpolant(); this._timeScaleInterpolant = interpolant; } const times = interpolant.parameterPositions, values = interpolant.sampleValues; times[ 0 ] = now; times[ 1 ] = now + duration; values[ 0 ] = startTimeScale / timeScale; values[ 1 ] = endTimeScale / timeScale; return this; } stopWarping() { const timeScaleInterpolant = this._timeScaleInterpolant; if ( timeScaleInterpolant !== null ) { this._timeScaleInterpolant = null; this._mixer._takeBackControlInterpolant( timeScaleInterpolant ); } return this; } // Object Accessors getMixer() { return this._mixer; } getClip() { return this._clip; } getRoot() { return this._localRoot || this._mixer._root; } // Interna _update( time, deltaTime, timeDirection, accuIndex ) { // called by the mixer if ( ! this.enabled ) { // call ._updateWeight() to update ._effectiveWeight this._updateWeight( time ); return; } const startTime = this._startTime; if ( startTime !== null ) { // check for scheduled start of action const timeRunning = ( time - startTime ) * timeDirection; if ( timeRunning < 0 || timeDirection === 0 ) { return; // yet to come / don't decide when delta = 0 } // start this._startTime = null; // unschedule deltaTime = timeDirection * timeRunning; } // apply time scale and advance time deltaTime *= this._updateTimeScale( time ); const clipTime = this._updateTime( deltaTime ); // note: _updateTime may disable the action resulting in // an effective weight of 0 const weight = this._updateWeight( time ); if ( weight > 0 ) { const interpolants = this._interpolants; const propertyMixers = this._propertyBindings; switch ( this.blendMode ) { case AdditiveAnimationBlendMode: for ( let j = 0, m = interpolants.length; j !== m; ++ j ) { interpolants[ j ].evaluate( clipTime ); propertyMixers[ j ].accumulateAdditive( weight ); } break; case NormalAnimationBlendMode: default: for ( let j = 0, m = interpolants.length; j !== m; ++ j ) { interpolants[ j ].evaluate( clipTime ); propertyMixers[ j ].accumulate( accuIndex, weight ); } } } } _updateWeight( time ) { let weight = 0; if ( this.enabled ) { weight = this.weight; const interpolant = this._weightInterpolant; if ( interpolant !== null ) { const interpolantValue = interpolant.evaluate( time )[ 0 ]; weight *= interpolantValue; if ( time > interpolant.parameterPositions[ 1 ] ) { this.stopFading(); if ( interpolantValue === 0 ) { // faded out, disable this.enabled = false; } } } } this._effectiveWeight = weight; return weight; } _updateTimeScale( time ) { let timeScale = 0; if ( ! this.paused ) { timeScale = this.timeScale; const interpolant = this._timeScaleInterpolant; if ( interpolant !== null ) { const interpolantValue = interpolant.evaluate( time )[ 0 ]; timeScale *= interpolantValue; if ( time > interpolant.parameterPositions[ 1 ] ) { this.stopWarping(); if ( timeScale === 0 ) { // motion has halted, pause this.paused = true; } else { // warp done - apply final time scale this.timeScale = timeScale; } } } } this._effectiveTimeScale = timeScale; return timeScale; } _updateTime( deltaTime ) { const duration = this._clip.duration; const loop = this.loop; let time = this.time + deltaTime; let loopCount = this._loopCount; const pingPong = ( loop === LoopPingPong ); if ( deltaTime === 0 ) { if ( loopCount === - 1 ) return time; return ( pingPong && ( loopCount & 1 ) === 1 ) ? duration - time : time; } if ( loop === LoopOnce ) { if ( loopCount === - 1 ) { // just started this._loopCount = 0; this._setEndings( true, true, false ); } handle_stop: { if ( time >= duration ) { time = duration; } else if ( time < 0 ) { time = 0; } else { this.time = time; break handle_stop; } if ( this.clampWhenFinished ) this.paused = true; else this.enabled = false; this.time = time; this._mixer.dispatchEvent( { type: 'finished', action: this, direction: deltaTime < 0 ? - 1 : 1 } ); } } else { // repetitive Repeat or PingPong if ( loopCount === - 1 ) { // just started if ( deltaTime >= 0 ) { loopCount = 0; this._setEndings( true, this.repetitions === 0, pingPong ); } else { // when looping in reverse direction, the initial // transition through zero counts as a repetition, // so leave loopCount at -1 this._setEndings( this.repetitions === 0, true, pingPong ); } } if ( time >= duration || time < 0 ) { // wrap around const loopDelta = Math.floor( time / duration ); // signed time -= duration * loopDelta; loopCount += Math.abs( loopDelta ); const pending = this.repetitions - loopCount; if ( pending <= 0 ) { // have to stop (switch state, clamp time, fire event) if ( this.clampWhenFinished ) this.paused = true; else this.enabled = false; time = deltaTime > 0 ? duration : 0; this.time = time; this._mixer.dispatchEvent( { type: 'finished', action: this, direction: deltaTime > 0 ? 1 : - 1 } ); } else { // keep running if ( pending === 1 ) { // entering the last round const atStart = deltaTime < 0; this._setEndings( atStart, ! atStart, pingPong ); } else { this._setEndings( false, false, pingPong ); } this._loopCount = loopCount; this.time = time; this._mixer.dispatchEvent( { type: 'loop', action: this, loopDelta: loopDelta } ); } } else { this.time = time; } if ( pingPong && ( loopCount & 1 ) === 1 ) { // invert time for the "pong round" return duration - time; } } return time; } _setEndings( atStart, atEnd, pingPong ) { const settings = this._interpolantSettings; if ( pingPong ) { settings.endingStart = ZeroSlopeEnding; settings.endingEnd = ZeroSlopeEnding; } else { // assuming for LoopOnce atStart == atEnd == true if ( atStart ) { settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding; } else { settings.endingStart = WrapAroundEnding; } if ( atEnd ) { settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding; } else { settings.endingEnd = WrapAroundEnding; } } } _scheduleFading( duration, weightNow, weightThen ) { const mixer = this._mixer, now = mixer.time; let interpolant = this._weightInterpolant; if ( interpolant === null ) { interpolant = mixer._lendControlInterpolant(); this._weightInterpolant = interpolant; } const times = interpolant.parameterPositions, values = interpolant.sampleValues; times[ 0 ] = now; values[ 0 ] = weightNow; times[ 1 ] = now + duration; values[ 1 ] = weightThen; return this; } } class AnimationMixer extends EventDispatcher { constructor( root ) { super(); this._root = root; this._initMemoryManager(); this._accuIndex = 0; this.time = 0; this.timeScale = 1.0; } _bindAction( action, prototypeAction ) { const root = action._localRoot || this._root, tracks = action._clip.tracks, nTracks = tracks.length, bindings = action._propertyBindings, interpolants = action._interpolants, rootUuid = root.uuid, bindingsByRoot = this._bindingsByRootAndName; let bindingsByName = bindingsByRoot[ rootUuid ]; if ( bindingsByName === undefined ) { bindingsByName = {}; bindingsByRoot[ rootUuid ] = bindingsByName; } for ( let i = 0; i !== nTracks; ++ i ) { const track = tracks[ i ], trackName = track.name; let binding = bindingsByName[ trackName ]; if ( binding !== undefined ) { bindings[ i ] = binding; } else { binding = bindings[ i ]; if ( binding !== undefined ) { // existing binding, make sure the cache knows if ( binding._cacheIndex === null ) { ++ binding.referenceCount; this._addInactiveBinding( binding, rootUuid, trackName ); } continue; } const path = prototypeAction && prototypeAction. _propertyBindings[ i ].binding.parsedPath; binding = new PropertyMixer( PropertyBinding.create( root, trackName, path ), track.ValueTypeName, track.getValueSize() ); ++ binding.referenceCount; this._addInactiveBinding( binding, rootUuid, trackName ); bindings[ i ] = binding; } interpolants[ i ].resultBuffer = binding.buffer; } } _activateAction( action ) { if ( ! this._isActiveAction( action ) ) { if ( action._cacheIndex === null ) { // this action has been forgotten by the cache, but the user // appears to be still using it -> rebind const rootUuid = ( action._localRoot || this._root ).uuid, clipUuid = action._clip.uuid, actionsForClip = this._actionsByClip[ clipUuid ]; this._bindAction( action, actionsForClip && actionsForClip.knownActions[ 0 ] ); this._addInactiveAction( action, clipUuid, rootUuid ); } const bindings = action._propertyBindings; // increment reference counts / sort out state for ( let i = 0, n = bindings.length; i !== n; ++ i ) { const binding = bindings[ i ]; if ( binding.useCount ++ === 0 ) { this._lendBinding( binding ); binding.saveOriginalState(); } } this._lendAction( action ); } } _deactivateAction( action ) { if ( this._isActiveAction( action ) ) { const bindings = action._propertyBindings; // decrement reference counts / sort out state for ( let i = 0, n = bindings.length; i !== n; ++ i ) { const binding = bindings[ i ]; if ( -- binding.useCount === 0 ) { binding.restoreOriginalState(); this._takeBackBinding( binding ); } } this._takeBackAction( action ); } } // Memory manager _initMemoryManager() { this._actions = []; // 'nActiveActions' followed by inactive ones this._nActiveActions = 0; this._actionsByClip = {}; // inside: // { // knownActions: Array< AnimationAction > - used as prototypes // actionByRoot: AnimationAction - lookup // } this._bindings = []; // 'nActiveBindings' followed by inactive ones this._nActiveBindings = 0; this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer > this._controlInterpolants = []; // same game as above this._nActiveControlInterpolants = 0; const scope = this; this.stats = { actions: { get total() { return scope._actions.length; }, get inUse() { return scope._nActiveActions; } }, bindings: { get total() { return scope._bindings.length; }, get inUse() { return scope._nActiveBindings; } }, controlInterpolants: { get total() { return scope._controlInterpolants.length; }, get inUse() { return scope._nActiveControlInterpolants; } } }; } // Memory management for AnimationAction objects _isActiveAction( action ) { const index = action._cacheIndex; return index !== null && index < this._nActiveActions; } _addInactiveAction( action, clipUuid, rootUuid ) { const actions = this._actions, actionsByClip = this._actionsByClip; let actionsForClip = actionsByClip[ clipUuid ]; if ( actionsForClip === undefined ) { actionsForClip = { knownActions: [ action ], actionByRoot: {} }; action._byClipCacheIndex = 0; actionsByClip[ clipUuid ] = actionsForClip; } else { const knownActions = actionsForClip.knownActions; action._byClipCacheIndex = knownActions.length; knownActions.push( action ); } action._cacheIndex = actions.length; actions.push( action ); actionsForClip.actionByRoot[ rootUuid ] = action; } _removeInactiveAction( action ) { const actions = this._actions, lastInactiveAction = actions[ actions.length - 1 ], cacheIndex = action._cacheIndex; lastInactiveAction._cacheIndex = cacheIndex; actions[ cacheIndex ] = lastInactiveAction; actions.pop(); action._cacheIndex = null; const clipUuid = action._clip.uuid, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[ clipUuid ], knownActionsForClip = actionsForClip.knownActions, lastKnownAction = knownActionsForClip[ knownActionsForClip.length - 1 ], byClipCacheIndex = action._byClipCacheIndex; lastKnownAction._byClipCacheIndex = byClipCacheIndex; knownActionsForClip[ byClipCacheIndex ] = lastKnownAction; knownActionsForClip.pop(); action._byClipCacheIndex = null; const actionByRoot = actionsForClip.actionByRoot, rootUuid = ( action._localRoot || this._root ).uuid; delete actionByRoot[ rootUuid ]; if ( knownActionsForClip.length === 0 ) { delete actionsByClip[ clipUuid ]; } this._removeInactiveBindingsForAction( action ); } _removeInactiveBindingsForAction( action ) { const bindings = action._propertyBindings; for ( let i = 0, n = bindings.length; i !== n; ++ i ) { const binding = bindings[ i ]; if ( -- binding.referenceCount === 0 ) { this._removeInactiveBinding( binding ); } } } _lendAction( action ) { // [ active actions | inactive actions ] // [ active actions >| inactive actions ] // s a // <-swap-> // a s const actions = this._actions, prevIndex = action._cacheIndex, lastActiveIndex = this._nActiveActions ++, firstInactiveAction = actions[ lastActiveIndex ]; action._cacheIndex = lastActiveIndex; actions[ lastActiveIndex ] = action; firstInactiveAction._cacheIndex = prevIndex; actions[ prevIndex ] = firstInactiveAction; } _takeBackAction( action ) { // [ active actions | inactive actions ] // [ active actions |< inactive actions ] // a s // <-swap-> // s a const actions = this._actions, prevIndex = action._cacheIndex, firstInactiveIndex = -- this._nActiveActions, lastActiveAction = actions[ firstInactiveIndex ]; action._cacheIndex = firstInactiveIndex; actions[ firstInactiveIndex ] = action; lastActiveAction._cacheIndex = prevIndex; actions[ prevIndex ] = lastActiveAction; } // Memory management for PropertyMixer objects _addInactiveBinding( binding, rootUuid, trackName ) { const bindingsByRoot = this._bindingsByRootAndName, bindings = this._bindings; let bindingByName = bindingsByRoot[ rootUuid ]; if ( bindingByName === undefined ) { bindingByName = {}; bindingsByRoot[ rootUuid ] = bindingByName; } bindingByName[ trackName ] = binding; binding._cacheIndex = bindings.length; bindings.push( binding ); } _removeInactiveBinding( binding ) { const bindings = this._bindings, propBinding = binding.binding, rootUuid = propBinding.rootNode.uuid, trackName = propBinding.path, bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[ rootUuid ], lastInactiveBinding = bindings[ bindings.length - 1 ], cacheIndex = binding._cacheIndex; lastInactiveBinding._cacheIndex = cacheIndex; bindings[ cacheIndex ] = lastInactiveBinding; bindings.pop(); delete bindingByName[ trackName ]; if ( Object.keys( bindingByName ).length === 0 ) { delete bindingsByRoot[ rootUuid ]; } } _lendBinding( binding ) { const bindings = this._bindings, prevIndex = binding._cacheIndex, lastActiveIndex = this._nActiveBindings ++, firstInactiveBinding = bindings[ lastActiveIndex ]; binding._cacheIndex = lastActiveIndex; bindings[ lastActiveIndex ] = binding; firstInactiveBinding._cacheIndex = prevIndex; bindings[ prevIndex ] = firstInactiveBinding; } _takeBackBinding( binding ) { const bindings = this._bindings, prevIndex = binding._cacheIndex, firstInactiveIndex = -- this._nActiveBindings, lastActiveBinding = bindings[ firstInactiveIndex ]; binding._cacheIndex = firstInactiveIndex; bindings[ firstInactiveIndex ] = binding; lastActiveBinding._cacheIndex = prevIndex; bindings[ prevIndex ] = lastActiveBinding; } // Memory management of Interpolants for weight and time scale _lendControlInterpolant() { const interpolants = this._controlInterpolants, lastActiveIndex = this._nActiveControlInterpolants ++; let interpolant = interpolants[ lastActiveIndex ]; if ( interpolant === undefined ) { interpolant = new LinearInterpolant( new Float32Array( 2 ), new Float32Array( 2 ), 1, this._controlInterpolantsResultBuffer ); interpolant.__cacheIndex = lastActiveIndex; interpolants[ lastActiveIndex ] = interpolant; } return interpolant; } _takeBackControlInterpolant( interpolant ) { const interpolants = this._controlInterpolants, prevIndex = interpolant.__cacheIndex, firstInactiveIndex = -- this._nActiveControlInterpolants, lastActiveInterpolant = interpolants[ firstInactiveIndex ]; interpolant.__cacheIndex = firstInactiveIndex; interpolants[ firstInactiveIndex ] = interpolant; lastActiveInterpolant.__cacheIndex = prevIndex; interpolants[ prevIndex ] = lastActiveInterpolant; } // return an action for a clip optionally using a custom root target // object (this method allocates a lot of dynamic memory in case a // previously unknown clip/root combination is specified) clipAction( clip, optionalRoot, blendMode ) { const root = optionalRoot || this._root, rootUuid = root.uuid; let clipObject = typeof clip === 'string' ? AnimationClip.findByName( root, clip ) : clip; const clipUuid = clipObject !== null ? clipObject.uuid : clip; const actionsForClip = this._actionsByClip[ clipUuid ]; let prototypeAction = null; if ( blendMode === undefined ) { if ( clipObject !== null ) { blendMode = clipObject.blendMode; } else { blendMode = NormalAnimationBlendMode; } } if ( actionsForClip !== undefined ) { const existingAction = actionsForClip.actionByRoot[ rootUuid ]; if ( existingAction !== undefined && existingAction.blendMode === blendMode ) { return existingAction; } // we know the clip, so we don't have to parse all // the bindings again but can just copy prototypeAction = actionsForClip.knownActions[ 0 ]; // also, take the clip from the prototype action if ( clipObject === null ) clipObject = prototypeAction._clip; } // clip must be known when specified via string if ( clipObject === null ) return null; // allocate all resources required to run it const newAction = new AnimationAction( this, clipObject, optionalRoot, blendMode ); this._bindAction( newAction, prototypeAction ); // and make the action known to the memory manager this._addInactiveAction( newAction, clipUuid, rootUuid ); return newAction; } // get an existing action existingAction( clip, optionalRoot ) { const root = optionalRoot || this._root, rootUuid = root.uuid, clipObject = typeof clip === 'string' ? AnimationClip.findByName( root, clip ) : clip, clipUuid = clipObject ? clipObject.uuid : clip, actionsForClip = this._actionsByClip[ clipUuid ]; if ( actionsForClip !== undefined ) { return actionsForClip.actionByRoot[ rootUuid ] || null; } return null; } // deactivates all previously scheduled actions stopAllAction() { const actions = this._actions, nActions = this._nActiveActions; for ( let i = nActions - 1; i >= 0; -- i ) { actions[ i ].stop(); } return this; } // advance the time and update apply the animation update( deltaTime ) { deltaTime *= this.timeScale; const actions = this._actions, nActions = this._nActiveActions, time = this.time += deltaTime, timeDirection = Math.sign( deltaTime ), accuIndex = this._accuIndex ^= 1; // run active actions for ( let i = 0; i !== nActions; ++ i ) { const action = actions[ i ]; action._update( time, deltaTime, timeDirection, accuIndex ); } // update scene graph const bindings = this._bindings, nBindings = this._nActiveBindings; for ( let i = 0; i !== nBindings; ++ i ) { bindings[ i ].apply( accuIndex ); } return this; } // Allows you to seek to a specific time in an animation. setTime( timeInSeconds ) { this.time = 0; // Zero out time attribute for AnimationMixer object; for ( let i = 0; i < this._actions.length; i ++ ) { this._actions[ i ].time = 0; // Zero out time attribute for all associated AnimationAction objects. } return this.update( timeInSeconds ); // Update used to set exact time. Returns "this" AnimationMixer object. } // return this mixer's root target object getRoot() { return this._root; } // free all resources specific to a particular clip uncacheClip( clip ) { const actions = this._actions, clipUuid = clip.uuid, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[ clipUuid ]; if ( actionsForClip !== undefined ) { // note: just calling _removeInactiveAction would mess up the // iteration state and also require updating the state we can // just throw away const actionsToRemove = actionsForClip.knownActions; for ( let i = 0, n = actionsToRemove.length; i !== n; ++ i ) { const action = actionsToRemove[ i ]; this._deactivateAction( action ); const cacheIndex = action._cacheIndex, lastInactiveAction = actions[ actions.length - 1 ]; action._cacheIndex = null; action._byClipCacheIndex = null; lastInactiveAction._cacheIndex = cacheIndex; actions[ cacheIndex ] = lastInactiveAction; actions.pop(); this._removeInactiveBindingsForAction( action ); } delete actionsByClip[ clipUuid ]; } } // free all resources specific to a particular root target object uncacheRoot( root ) { const rootUuid = root.uuid, actionsByClip = this._actionsByClip; for ( const clipUuid in actionsByClip ) { const actionByRoot = actionsByClip[ clipUuid ].actionByRoot, action = actionByRoot[ rootUuid ]; if ( action !== undefined ) { this._deactivateAction( action ); this._removeInactiveAction( action ); } } const bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[ rootUuid ]; if ( bindingByName !== undefined ) { for ( const trackName in bindingByName ) { const binding = bindingByName[ trackName ]; binding.restoreOriginalState(); this._removeInactiveBinding( binding ); } } } // remove a targeted clip from the cache uncacheAction( clip, optionalRoot ) { const action = this.existingAction( clip, optionalRoot ); if ( action !== null ) { this._deactivateAction( action ); this._removeInactiveAction( action ); } } } AnimationMixer.prototype._controlInterpolantsResultBuffer = new Float32Array( 1 ); class Uniform { constructor( value ) { if ( typeof value === 'string' ) { console.warn( 'THREE.Uniform: Type parameter is no longer needed.' ); value = arguments[ 1 ]; } this.value = value; } clone() { return new Uniform( this.value.clone === undefined ? this.value : this.value.clone() ); } } class InstancedInterleavedBuffer extends InterleavedBuffer { constructor( array, stride, meshPerAttribute = 1 ) { super( array, stride ); this.meshPerAttribute = meshPerAttribute; } copy( source ) { super.copy( source ); this.meshPerAttribute = source.meshPerAttribute; return this; } clone( data ) { const ib = super.clone( data ); ib.meshPerAttribute = this.meshPerAttribute; return ib; } toJSON( data ) { const json = super.toJSON( data ); json.isInstancedInterleavedBuffer = true; json.meshPerAttribute = this.meshPerAttribute; return json; } } InstancedInterleavedBuffer.prototype.isInstancedInterleavedBuffer = true; class GLBufferAttribute { constructor( buffer, type, itemSize, elementSize, count ) { this.buffer = buffer; this.type = type; this.itemSize = itemSize; this.elementSize = elementSize; this.count = count; this.version = 0; } set needsUpdate( value ) { if ( value === true ) this.version ++; } setBuffer( buffer ) { this.buffer = buffer; return this; } setType( type, elementSize ) { this.type = type; this.elementSize = elementSize; return this; } setItemSize( itemSize ) { this.itemSize = itemSize; return this; } setCount( count ) { this.count = count; return this; } } GLBufferAttribute.prototype.isGLBufferAttribute = true; class Raycaster { constructor( origin, direction, near = 0, far = Infinity ) { this.ray = new Ray( origin, direction ); // direction is assumed to be normalized (for accurate distance calculations) this.near = near; this.far = far; this.camera = null; this.layers = new Layers(); this.params = { Mesh: {}, Line: { threshold: 1 }, LOD: {}, Points: { threshold: 1 }, Sprite: {} }; } set( origin, direction ) { // direction is assumed to be normalized (for accurate distance calculations) this.ray.set( origin, direction ); } setFromCamera( coords, camera ) { if ( camera && camera.isPerspectiveCamera ) { this.ray.origin.setFromMatrixPosition( camera.matrixWorld ); this.ray.direction.set( coords.x, coords.y, 0.5 ).unproject( camera ).sub( this.ray.origin ).normalize(); this.camera = camera; } else if ( camera && camera.isOrthographicCamera ) { this.ray.origin.set( coords.x, coords.y, ( camera.near + camera.far ) / ( camera.near - camera.far ) ).unproject( camera ); // set origin in plane of camera this.ray.direction.set( 0, 0, - 1 ).transformDirection( camera.matrixWorld ); this.camera = camera; } else { console.error( 'THREE.Raycaster: Unsupported camera type: ' + camera.type ); } } intersectObject( object, recursive = false, intersects = [] ) { intersectObject( object, this, intersects, recursive ); intersects.sort( ascSort ); return intersects; } intersectObjects( objects, recursive = false, intersects = [] ) { for ( let i = 0, l = objects.length; i < l; i ++ ) { intersectObject( objects[ i ], this, intersects, recursive ); } intersects.sort( ascSort ); return intersects; } } function ascSort( a, b ) { return a.distance - b.distance; } function intersectObject( object, raycaster, intersects, recursive ) { if ( object.layers.test( raycaster.layers ) ) { object.raycast( raycaster, intersects ); } if ( recursive === true ) { const children = object.children; for ( let i = 0, l = children.length; i < l; i ++ ) { intersectObject( children[ i ], raycaster, intersects, true ); } } } /** * Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system * * The polar angle (phi) is measured from the positive y-axis. The positive y-axis is up. * The azimuthal angle (theta) is measured from the positive z-axis. */ class Spherical { constructor( radius = 1, phi = 0, theta = 0 ) { this.radius = radius; this.phi = phi; // polar angle this.theta = theta; // azimuthal angle return this; } set( radius, phi, theta ) { this.radius = radius; this.phi = phi; this.theta = theta; return this; } copy( other ) { this.radius = other.radius; this.phi = other.phi; this.theta = other.theta; return this; } // restrict phi to be betwee EPS and PI-EPS makeSafe() { const EPS = 0.000001; this.phi = Math.max( EPS, Math.min( Math.PI - EPS, this.phi ) ); return this; } setFromVector3( v ) { return this.setFromCartesianCoords( v.x, v.y, v.z ); } setFromCartesianCoords( x, y, z ) { this.radius = Math.sqrt( x * x + y * y + z * z ); if ( this.radius === 0 ) { this.theta = 0; this.phi = 0; } else { this.theta = Math.atan2( x, z ); this.phi = Math.acos( clamp( y / this.radius, - 1, 1 ) ); } return this; } clone() { return new this.constructor().copy( this ); } } /** * Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system */ class Cylindrical { constructor( radius = 1, theta = 0, y = 0 ) { this.radius = radius; // distance from the origin to a point in the x-z plane this.theta = theta; // counterclockwise angle in the x-z plane measured in radians from the positive z-axis this.y = y; // height above the x-z plane return this; } set( radius, theta, y ) { this.radius = radius; this.theta = theta; this.y = y; return this; } copy( other ) { this.radius = other.radius; this.theta = other.theta; this.y = other.y; return this; } setFromVector3( v ) { return this.setFromCartesianCoords( v.x, v.y, v.z ); } setFromCartesianCoords( x, y, z ) { this.radius = Math.sqrt( x * x + z * z ); this.theta = Math.atan2( x, z ); this.y = y; return this; } clone() { return new this.constructor().copy( this ); } } const _vector$4 = /*@__PURE__*/ new Vector2(); class Box2 { constructor( min = new Vector2( + Infinity, + Infinity ), max = new Vector2( - Infinity, - Infinity ) ) { this.min = min; this.max = max; } set( min, max ) { this.min.copy( min ); this.max.copy( max ); return this; } setFromPoints( points ) { this.makeEmpty(); for ( let i = 0, il = points.length; i < il; i ++ ) { this.expandByPoint( points[ i ] ); } return this; } setFromCenterAndSize( center, size ) { const halfSize = _vector$4.copy( size ).multiplyScalar( 0.5 ); this.min.copy( center ).sub( halfSize ); this.max.copy( center ).add( halfSize ); return this; } clone() { return new this.constructor().copy( this ); } copy( box ) { this.min.copy( box.min ); this.max.copy( box.max ); return this; } makeEmpty() { this.min.x = this.min.y = + Infinity; this.max.x = this.max.y = - Infinity; return this; } isEmpty() { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ); } getCenter( target ) { return this.isEmpty() ? target.set( 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 ); } getSize( target ) { return this.isEmpty() ? target.set( 0, 0 ) : target.subVectors( this.max, this.min ); } expandByPoint( point ) { this.min.min( point ); this.max.max( point ); return this; } expandByVector( vector ) { this.min.sub( vector ); this.max.add( vector ); return this; } expandByScalar( scalar ) { this.min.addScalar( - scalar ); this.max.addScalar( scalar ); return this; } containsPoint( point ) { return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y ? false : true; } containsBox( box ) { return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y; } getParameter( point, target ) { // This can potentially have a divide by zero if the box // has a size dimension of 0. return target.set( ( point.x - this.min.x ) / ( this.max.x - this.min.x ), ( point.y - this.min.y ) / ( this.max.y - this.min.y ) ); } intersectsBox( box ) { // using 4 splitting planes to rule out intersections return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y ? false : true; } clampPoint( point, target ) { return target.copy( point ).clamp( this.min, this.max ); } distanceToPoint( point ) { const clampedPoint = _vector$4.copy( point ).clamp( this.min, this.max ); return clampedPoint.sub( point ).length(); } intersect( box ) { this.min.max( box.min ); this.max.min( box.max ); return this; } union( box ) { this.min.min( box.min ); this.max.max( box.max ); return this; } translate( offset ) { this.min.add( offset ); this.max.add( offset ); return this; } equals( box ) { return box.min.equals( this.min ) && box.max.equals( this.max ); } } Box2.prototype.isBox2 = true; const _startP = /*@__PURE__*/ new Vector3(); const _startEnd = /*@__PURE__*/ new Vector3(); class Line3 { constructor( start = new Vector3(), end = new Vector3() ) { this.start = start; this.end = end; } set( start, end ) { this.start.copy( start ); this.end.copy( end ); return this; } copy( line ) { this.start.copy( line.start ); this.end.copy( line.end ); return this; } getCenter( target ) { return target.addVectors( this.start, this.end ).multiplyScalar( 0.5 ); } delta( target ) { return target.subVectors( this.end, this.start ); } distanceSq() { return this.start.distanceToSquared( this.end ); } distance() { return this.start.distanceTo( this.end ); } at( t, target ) { return this.delta( target ).multiplyScalar( t ).add( this.start ); } closestPointToPointParameter( point, clampToLine ) { _startP.subVectors( point, this.start ); _startEnd.subVectors( this.end, this.start ); const startEnd2 = _startEnd.dot( _startEnd ); const startEnd_startP = _startEnd.dot( _startP ); let t = startEnd_startP / startEnd2; if ( clampToLine ) { t = clamp( t, 0, 1 ); } return t; } closestPointToPoint( point, clampToLine, target ) { const t = this.closestPointToPointParameter( point, clampToLine ); return this.delta( target ).multiplyScalar( t ).add( this.start ); } applyMatrix4( matrix ) { this.start.applyMatrix4( matrix ); this.end.applyMatrix4( matrix ); return this; } equals( line ) { return line.start.equals( this.start ) && line.end.equals( this.end ); } clone() { return new this.constructor().copy( this ); } } class ImmediateRenderObject extends Object3D { constructor( material ) { super(); this.material = material; this.render = function ( /* renderCallback */ ) {}; this.hasPositions = false; this.hasNormals = false; this.hasColors = false; this.hasUvs = false; this.positionArray = null; this.normalArray = null; this.colorArray = null; this.uvArray = null; this.count = 0; } } ImmediateRenderObject.prototype.isImmediateRenderObject = true; const _vector$3 = /*@__PURE__*/ new Vector3(); class SpotLightHelper extends Object3D { constructor( light, color ) { super(); this.light = light; this.light.updateMatrixWorld(); this.matrix = light.matrixWorld; this.matrixAutoUpdate = false; this.color = color; const geometry = new BufferGeometry(); const positions = [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, - 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, - 1, 1 ]; for ( let i = 0, j = 1, l = 32; i < l; i ++, j ++ ) { const p1 = ( i / l ) * Math.PI * 2; const p2 = ( j / l ) * Math.PI * 2; positions.push( Math.cos( p1 ), Math.sin( p1 ), 1, Math.cos( p2 ), Math.sin( p2 ), 1 ); } geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) ); const material = new LineBasicMaterial( { fog: false, toneMapped: false } ); this.cone = new LineSegments( geometry, material ); this.add( this.cone ); this.update(); } dispose() { this.cone.geometry.dispose(); this.cone.material.dispose(); } update() { this.light.updateMatrixWorld(); const coneLength = this.light.distance ? this.light.distance : 1000; const coneWidth = coneLength * Math.tan( this.light.angle ); this.cone.scale.set( coneWidth, coneWidth, coneLength ); _vector$3.setFromMatrixPosition( this.light.target.matrixWorld ); this.cone.lookAt( _vector$3 ); if ( this.color !== undefined ) { this.cone.material.color.set( this.color ); } else { this.cone.material.color.copy( this.light.color ); } } } const _vector$2 = /*@__PURE__*/ new Vector3(); const _boneMatrix = /*@__PURE__*/ new Matrix4(); const _matrixWorldInv = /*@__PURE__*/ new Matrix4(); class SkeletonHelper extends LineSegments { constructor( object ) { const bones = getBoneList( object ); const geometry = new BufferGeometry(); const vertices = []; const colors = []; const color1 = new Color( 0, 0, 1 ); const color2 = new Color( 0, 1, 0 ); for ( let i = 0; i < bones.length; i ++ ) { const bone = bones[ i ]; if ( bone.parent && bone.parent.isBone ) { vertices.push( 0, 0, 0 ); vertices.push( 0, 0, 0 ); colors.push( color1.r, color1.g, color1.b ); colors.push( color2.r, color2.g, color2.b ); } } geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); const material = new LineBasicMaterial( { vertexColors: true, depthTest: false, depthWrite: false, toneMapped: false, transparent: true } ); super( geometry, material ); this.type = 'SkeletonHelper'; this.isSkeletonHelper = true; this.root = object; this.bones = bones; this.matrix = object.matrixWorld; this.matrixAutoUpdate = false; } updateMatrixWorld( force ) { const bones = this.bones; const geometry = this.geometry; const position = geometry.getAttribute( 'position' ); _matrixWorldInv.copy( this.root.matrixWorld ).invert(); for ( let i = 0, j = 0; i < bones.length; i ++ ) { const bone = bones[ i ]; if ( bone.parent && bone.parent.isBone ) { _boneMatrix.multiplyMatrices( _matrixWorldInv, bone.matrixWorld ); _vector$2.setFromMatrixPosition( _boneMatrix ); position.setXYZ( j, _vector$2.x, _vector$2.y, _vector$2.z ); _boneMatrix.multiplyMatrices( _matrixWorldInv, bone.parent.matrixWorld ); _vector$2.setFromMatrixPosition( _boneMatrix ); position.setXYZ( j + 1, _vector$2.x, _vector$2.y, _vector$2.z ); j += 2; } } geometry.getAttribute( 'position' ).needsUpdate = true; super.updateMatrixWorld( force ); } } function getBoneList( object ) { const boneList = []; if ( object && object.isBone ) { boneList.push( object ); } for ( let i = 0; i < object.children.length; i ++ ) { boneList.push.apply( boneList, getBoneList( object.children[ i ] ) ); } return boneList; } class PointLightHelper extends Mesh { constructor( light, sphereSize, color ) { const geometry = new SphereGeometry( sphereSize, 4, 2 ); const material = new MeshBasicMaterial( { wireframe: true, fog: false, toneMapped: false } ); super( geometry, material ); this.light = light; this.light.updateMatrixWorld(); this.color = color; this.type = 'PointLightHelper'; this.matrix = this.light.matrixWorld; this.matrixAutoUpdate = false; this.update(); /* // TODO: delete this comment? const distanceGeometry = new THREE.IcosahedronBufferGeometry( 1, 2 ); const distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } ); this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial ); this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial ); const d = light.distance; if ( d === 0.0 ) { this.lightDistance.visible = false; } else { this.lightDistance.scale.set( d, d, d ); } this.add( this.lightDistance ); */ } dispose() { this.geometry.dispose(); this.material.dispose(); } update() { if ( this.color !== undefined ) { this.material.color.set( this.color ); } else { this.material.color.copy( this.light.color ); } /* const d = this.light.distance; if ( d === 0.0 ) { this.lightDistance.visible = false; } else { this.lightDistance.visible = true; this.lightDistance.scale.set( d, d, d ); } */ } } const _vector$1 = /*@__PURE__*/ new Vector3(); const _color1 = /*@__PURE__*/ new Color(); const _color2 = /*@__PURE__*/ new Color(); class HemisphereLightHelper extends Object3D { constructor( light, size, color ) { super(); this.light = light; this.light.updateMatrixWorld(); this.matrix = light.matrixWorld; this.matrixAutoUpdate = false; this.color = color; const geometry = new OctahedronGeometry( size ); geometry.rotateY( Math.PI * 0.5 ); this.material = new MeshBasicMaterial( { wireframe: true, fog: false, toneMapped: false } ); if ( this.color === undefined ) this.material.vertexColors = true; const position = geometry.getAttribute( 'position' ); const colors = new Float32Array( position.count * 3 ); geometry.setAttribute( 'color', new BufferAttribute( colors, 3 ) ); this.add( new Mesh( geometry, this.material ) ); this.update(); } dispose() { this.children[ 0 ].geometry.dispose(); this.children[ 0 ].material.dispose(); } update() { const mesh = this.children[ 0 ]; if ( this.color !== undefined ) { this.material.color.set( this.color ); } else { const colors = mesh.geometry.getAttribute( 'color' ); _color1.copy( this.light.color ); _color2.copy( this.light.groundColor ); for ( let i = 0, l = colors.count; i < l; i ++ ) { const color = ( i < ( l / 2 ) ) ? _color1 : _color2; colors.setXYZ( i, color.r, color.g, color.b ); } colors.needsUpdate = true; } mesh.lookAt( _vector$1.setFromMatrixPosition( this.light.matrixWorld ).negate() ); } } class GridHelper extends LineSegments { constructor( size = 10, divisions = 10, color1 = 0x444444, color2 = 0x888888 ) { color1 = new Color( color1 ); color2 = new Color( color2 ); const center = divisions / 2; const step = size / divisions; const halfSize = size / 2; const vertices = [], colors = []; for ( let i = 0, j = 0, k = - halfSize; i <= divisions; i ++, k += step ) { vertices.push( - halfSize, 0, k, halfSize, 0, k ); vertices.push( k, 0, - halfSize, k, 0, halfSize ); const color = i === center ? color1 : color2; color.toArray( colors, j ); j += 3; color.toArray( colors, j ); j += 3; color.toArray( colors, j ); j += 3; color.toArray( colors, j ); j += 3; } const geometry = new BufferGeometry(); geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); const material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } ); super( geometry, material ); this.type = 'GridHelper'; } } class PolarGridHelper extends LineSegments { constructor( radius = 10, radials = 16, circles = 8, divisions = 64, color1 = 0x444444, color2 = 0x888888 ) { color1 = new Color( color1 ); color2 = new Color( color2 ); const vertices = []; const colors = []; // create the radials for ( let i = 0; i <= radials; i ++ ) { const v = ( i / radials ) * ( Math.PI * 2 ); const x = Math.sin( v ) * radius; const z = Math.cos( v ) * radius; vertices.push( 0, 0, 0 ); vertices.push( x, 0, z ); const color = ( i & 1 ) ? color1 : color2; colors.push( color.r, color.g, color.b ); colors.push( color.r, color.g, color.b ); } // create the circles for ( let i = 0; i <= circles; i ++ ) { const color = ( i & 1 ) ? color1 : color2; const r = radius - ( radius / circles * i ); for ( let j = 0; j < divisions; j ++ ) { // first vertex let v = ( j / divisions ) * ( Math.PI * 2 ); let x = Math.sin( v ) * r; let z = Math.cos( v ) * r; vertices.push( x, 0, z ); colors.push( color.r, color.g, color.b ); // second vertex v = ( ( j + 1 ) / divisions ) * ( Math.PI * 2 ); x = Math.sin( v ) * r; z = Math.cos( v ) * r; vertices.push( x, 0, z ); colors.push( color.r, color.g, color.b ); } } const geometry = new BufferGeometry(); geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); const material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } ); super( geometry, material ); this.type = 'PolarGridHelper'; } } const _v1 = /*@__PURE__*/ new Vector3(); const _v2 = /*@__PURE__*/ new Vector3(); const _v3 = /*@__PURE__*/ new Vector3(); class DirectionalLightHelper extends Object3D { constructor( light, size, color ) { super(); this.light = light; this.light.updateMatrixWorld(); this.matrix = light.matrixWorld; this.matrixAutoUpdate = false; this.color = color; if ( size === undefined ) size = 1; let geometry = new BufferGeometry(); geometry.setAttribute( 'position', new Float32BufferAttribute( [ - size, size, 0, size, size, 0, size, - size, 0, - size, - size, 0, - size, size, 0 ], 3 ) ); const material = new LineBasicMaterial( { fog: false, toneMapped: false } ); this.lightPlane = new Line( geometry, material ); this.add( this.lightPlane ); geometry = new BufferGeometry(); geometry.setAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0, 0, 0, 1 ], 3 ) ); this.targetLine = new Line( geometry, material ); this.add( this.targetLine ); this.update(); } dispose() { this.lightPlane.geometry.dispose(); this.lightPlane.material.dispose(); this.targetLine.geometry.dispose(); this.targetLine.material.dispose(); } update() { _v1.setFromMatrixPosition( this.light.matrixWorld ); _v2.setFromMatrixPosition( this.light.target.matrixWorld ); _v3.subVectors( _v2, _v1 ); this.lightPlane.lookAt( _v2 ); if ( this.color !== undefined ) { this.lightPlane.material.color.set( this.color ); this.targetLine.material.color.set( this.color ); } else { this.lightPlane.material.color.copy( this.light.color ); this.targetLine.material.color.copy( this.light.color ); } this.targetLine.lookAt( _v2 ); this.targetLine.scale.z = _v3.length(); } } const _vector = /*@__PURE__*/ new Vector3(); const _camera = /*@__PURE__*/ new Camera(); /** * - shows frustum, line of sight and up of the camera * - suitable for fast updates * - based on frustum visualization in lightgl.js shadowmap example * http://evanw.github.com/lightgl.js/tests/shadowmap.html */ class CameraHelper extends LineSegments { constructor( camera ) { const geometry = new BufferGeometry(); const material = new LineBasicMaterial( { color: 0xffffff, vertexColors: true, toneMapped: false } ); const vertices = []; const colors = []; const pointMap = {}; // colors const colorFrustum = new Color( 0xffaa00 ); const colorCone = new Color( 0xff0000 ); const colorUp = new Color( 0x00aaff ); const colorTarget = new Color( 0xffffff ); const colorCross = new Color( 0x333333 ); // near addLine( 'n1', 'n2', colorFrustum ); addLine( 'n2', 'n4', colorFrustum ); addLine( 'n4', 'n3', colorFrustum ); addLine( 'n3', 'n1', colorFrustum ); // far addLine( 'f1', 'f2', colorFrustum ); addLine( 'f2', 'f4', colorFrustum ); addLine( 'f4', 'f3', colorFrustum ); addLine( 'f3', 'f1', colorFrustum ); // sides addLine( 'n1', 'f1', colorFrustum ); addLine( 'n2', 'f2', colorFrustum ); addLine( 'n3', 'f3', colorFrustum ); addLine( 'n4', 'f4', colorFrustum ); // cone addLine( 'p', 'n1', colorCone ); addLine( 'p', 'n2', colorCone ); addLine( 'p', 'n3', colorCone ); addLine( 'p', 'n4', colorCone ); // up addLine( 'u1', 'u2', colorUp ); addLine( 'u2', 'u3', colorUp ); addLine( 'u3', 'u1', colorUp ); // target addLine( 'c', 't', colorTarget ); addLine( 'p', 'c', colorCross ); // cross addLine( 'cn1', 'cn2', colorCross ); addLine( 'cn3', 'cn4', colorCross ); addLine( 'cf1', 'cf2', colorCross ); addLine( 'cf3', 'cf4', colorCross ); function addLine( a, b, color ) { addPoint( a, color ); addPoint( b, color ); } function addPoint( id, color ) { vertices.push( 0, 0, 0 ); colors.push( color.r, color.g, color.b ); if ( pointMap[ id ] === undefined ) { pointMap[ id ] = []; } pointMap[ id ].push( ( vertices.length / 3 ) - 1 ); } geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); super( geometry, material ); this.type = 'CameraHelper'; this.camera = camera; if ( this.camera.updateProjectionMatrix ) this.camera.updateProjectionMatrix(); this.matrix = camera.matrixWorld; this.matrixAutoUpdate = false; this.pointMap = pointMap; this.update(); } update() { const geometry = this.geometry; const pointMap = this.pointMap; const w = 1, h = 1; // we need just camera projection matrix inverse // world matrix must be identity _camera.projectionMatrixInverse.copy( this.camera.projectionMatrixInverse ); // center / target setPoint( 'c', pointMap, geometry, _camera, 0, 0, - 1 ); setPoint( 't', pointMap, geometry, _camera, 0, 0, 1 ); // near setPoint( 'n1', pointMap, geometry, _camera, - w, - h, - 1 ); setPoint( 'n2', pointMap, geometry, _camera, w, - h, - 1 ); setPoint( 'n3', pointMap, geometry, _camera, - w, h, - 1 ); setPoint( 'n4', pointMap, geometry, _camera, w, h, - 1 ); // far setPoint( 'f1', pointMap, geometry, _camera, - w, - h, 1 ); setPoint( 'f2', pointMap, geometry, _camera, w, - h, 1 ); setPoint( 'f3', pointMap, geometry, _camera, - w, h, 1 ); setPoint( 'f4', pointMap, geometry, _camera, w, h, 1 ); // up setPoint( 'u1', pointMap, geometry, _camera, w * 0.7, h * 1.1, - 1 ); setPoint( 'u2', pointMap, geometry, _camera, - w * 0.7, h * 1.1, - 1 ); setPoint( 'u3', pointMap, geometry, _camera, 0, h * 2, - 1 ); // cross setPoint( 'cf1', pointMap, geometry, _camera, - w, 0, 1 ); setPoint( 'cf2', pointMap, geometry, _camera, w, 0, 1 ); setPoint( 'cf3', pointMap, geometry, _camera, 0, - h, 1 ); setPoint( 'cf4', pointMap, geometry, _camera, 0, h, 1 ); setPoint( 'cn1', pointMap, geometry, _camera, - w, 0, - 1 ); setPoint( 'cn2', pointMap, geometry, _camera, w, 0, - 1 ); setPoint( 'cn3', pointMap, geometry, _camera, 0, - h, - 1 ); setPoint( 'cn4', pointMap, geometry, _camera, 0, h, - 1 ); geometry.getAttribute( 'position' ).needsUpdate = true; } dispose() { this.geometry.dispose(); this.material.dispose(); } } function setPoint( point, pointMap, geometry, camera, x, y, z ) { _vector.set( x, y, z ).unproject( camera ); const points = pointMap[ point ]; if ( points !== undefined ) { const position = geometry.getAttribute( 'position' ); for ( let i = 0, l = points.length; i < l; i ++ ) { position.setXYZ( points[ i ], _vector.x, _vector.y, _vector.z ); } } } const _box = /*@__PURE__*/ new Box3(); class BoxHelper extends LineSegments { constructor( object, color = 0xffff00 ) { const indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] ); const positions = new Float32Array( 8 * 3 ); const geometry = new BufferGeometry(); geometry.setIndex( new BufferAttribute( indices, 1 ) ); geometry.setAttribute( 'position', new BufferAttribute( positions, 3 ) ); super( geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) ); this.object = object; this.type = 'BoxHelper'; this.matrixAutoUpdate = false; this.update(); } update( object ) { if ( object !== undefined ) { console.warn( 'THREE.BoxHelper: .update() has no longer arguments.' ); } if ( this.object !== undefined ) { _box.setFromObject( this.object ); } if ( _box.isEmpty() ) return; const min = _box.min; const max = _box.max; /* 5____4 1/___0/| | 6__|_7 2/___3/ 0: max.x, max.y, max.z 1: min.x, max.y, max.z 2: min.x, min.y, max.z 3: max.x, min.y, max.z 4: max.x, max.y, min.z 5: min.x, max.y, min.z 6: min.x, min.y, min.z 7: max.x, min.y, min.z */ const position = this.geometry.attributes.position; const array = position.array; array[ 0 ] = max.x; array[ 1 ] = max.y; array[ 2 ] = max.z; array[ 3 ] = min.x; array[ 4 ] = max.y; array[ 5 ] = max.z; array[ 6 ] = min.x; array[ 7 ] = min.y; array[ 8 ] = max.z; array[ 9 ] = max.x; array[ 10 ] = min.y; array[ 11 ] = max.z; array[ 12 ] = max.x; array[ 13 ] = max.y; array[ 14 ] = min.z; array[ 15 ] = min.x; array[ 16 ] = max.y; array[ 17 ] = min.z; array[ 18 ] = min.x; array[ 19 ] = min.y; array[ 20 ] = min.z; array[ 21 ] = max.x; array[ 22 ] = min.y; array[ 23 ] = min.z; position.needsUpdate = true; this.geometry.computeBoundingSphere(); } setFromObject( object ) { this.object = object; this.update(); return this; } copy( source ) { LineSegments.prototype.copy.call( this, source ); this.object = source.object; return this; } } class Box3Helper extends LineSegments { constructor( box, color = 0xffff00 ) { const indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] ); const positions = [ 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, - 1, 1, - 1, - 1, - 1, - 1, 1, - 1, - 1 ]; const geometry = new BufferGeometry(); geometry.setIndex( new BufferAttribute( indices, 1 ) ); geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) ); super( geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) ); this.box = box; this.type = 'Box3Helper'; this.geometry.computeBoundingSphere(); } updateMatrixWorld( force ) { const box = this.box; if ( box.isEmpty() ) return; box.getCenter( this.position ); box.getSize( this.scale ); this.scale.multiplyScalar( 0.5 ); super.updateMatrixWorld( force ); } } class PlaneHelper extends Line { constructor( plane, size = 1, hex = 0xffff00 ) { const color = hex; const positions = [ 1, - 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0 ]; const geometry = new BufferGeometry(); geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) ); geometry.computeBoundingSphere(); super( geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) ); this.type = 'PlaneHelper'; this.plane = plane; this.size = size; const positions2 = [ 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, 1, 1, - 1, - 1, 1, 1, - 1, 1 ]; const geometry2 = new BufferGeometry(); geometry2.setAttribute( 'position', new Float32BufferAttribute( positions2, 3 ) ); geometry2.computeBoundingSphere(); this.add( new Mesh( geometry2, new MeshBasicMaterial( { color: color, opacity: 0.2, transparent: true, depthWrite: false, toneMapped: false } ) ) ); } updateMatrixWorld( force ) { let scale = - this.plane.constant; if ( Math.abs( scale ) < 1e-8 ) scale = 1e-8; // sign does not matter this.scale.set( 0.5 * this.size, 0.5 * this.size, scale ); this.children[ 0 ].material.side = ( scale < 0 ) ? BackSide : FrontSide; // renderer flips side when determinant < 0; flipping not wanted here this.lookAt( this.plane.normal ); super.updateMatrixWorld( force ); } } const _axis = /*@__PURE__*/ new Vector3(); let _lineGeometry, _coneGeometry; class ArrowHelper extends Object3D { // dir is assumed to be normalized constructor( dir = new Vector3( 0, 0, 1 ), origin = new Vector3( 0, 0, 0 ), length = 1, color = 0xffff00, headLength = length * 0.2, headWidth = headLength * 0.2 ) { super(); this.type = 'ArrowHelper'; if ( _lineGeometry === undefined ) { _lineGeometry = new BufferGeometry(); _lineGeometry.setAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0, 0, 1, 0 ], 3 ) ); _coneGeometry = new CylinderGeometry( 0, 0.5, 1, 5, 1 ); _coneGeometry.translate( 0, - 0.5, 0 ); } this.position.copy( origin ); this.line = new Line( _lineGeometry, new LineBasicMaterial( { color: color, toneMapped: false } ) ); this.line.matrixAutoUpdate = false; this.add( this.line ); this.cone = new Mesh( _coneGeometry, new MeshBasicMaterial( { color: color, toneMapped: false } ) ); this.cone.matrixAutoUpdate = false; this.add( this.cone ); this.setDirection( dir ); this.setLength( length, headLength, headWidth ); } setDirection( dir ) { // dir is assumed to be normalized if ( dir.y > 0.99999 ) { this.quaternion.set( 0, 0, 0, 1 ); } else if ( dir.y < - 0.99999 ) { this.quaternion.set( 1, 0, 0, 0 ); } else { _axis.set( dir.z, 0, - dir.x ).normalize(); const radians = Math.acos( dir.y ); this.quaternion.setFromAxisAngle( _axis, radians ); } } setLength( length, headLength = length * 0.2, headWidth = headLength * 0.2 ) { this.line.scale.set( 1, Math.max( 0.0001, length - headLength ), 1 ); // see #17458 this.line.updateMatrix(); this.cone.scale.set( headWidth, headLength, headWidth ); this.cone.position.y = length; this.cone.updateMatrix(); } setColor( color ) { this.line.material.color.set( color ); this.cone.material.color.set( color ); } copy( source ) { super.copy( source, false ); this.line.copy( source.line ); this.cone.copy( source.cone ); return this; } } class AxesHelper extends LineSegments { constructor( size = 1 ) { const vertices = [ 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size ]; const colors = [ 1, 0, 0, 1, 0.6, 0, 0, 1, 0, 0.6, 1, 0, 0, 0, 1, 0, 0.6, 1 ]; const geometry = new BufferGeometry(); geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); const material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } ); super( geometry, material ); this.type = 'AxesHelper'; } setColors( xAxisColor, yAxisColor, zAxisColor ) { const color = new Color(); const array = this.geometry.attributes.color.array; color.set( xAxisColor ); color.toArray( array, 0 ); color.toArray( array, 3 ); color.set( yAxisColor ); color.toArray( array, 6 ); color.toArray( array, 9 ); color.set( zAxisColor ); color.toArray( array, 12 ); color.toArray( array, 15 ); this.geometry.attributes.color.needsUpdate = true; return this; } dispose() { this.geometry.dispose(); this.material.dispose(); } } const _floatView = new Float32Array( 1 ); const _int32View = new Int32Array( _floatView.buffer ); class DataUtils { // Converts float32 to float16 (stored as uint16 value). static toHalfFloat( val ) { // Source: http://gamedev.stackexchange.com/questions/17326/conversion-of-a-number-from-single-precision-floating-point-representation-to-a/17410#17410 /* This method is faster than the OpenEXR implementation (very often * used, eg. in Ogre), with the additional benefit of rounding, inspired * by James Tursa?s half-precision code. */ _floatView[ 0 ] = val; const x = _int32View[ 0 ]; let bits = ( x >> 16 ) & 0x8000; /* Get the sign */ let m = ( x >> 12 ) & 0x07ff; /* Keep one extra bit for rounding */ const e = ( x >> 23 ) & 0xff; /* Using int is faster here */ /* If zero, or denormal, or exponent underflows too much for a denormal * half, return signed zero. */ if ( e < 103 ) return bits; /* If NaN, return NaN. If Inf or exponent overflow, return Inf. */ if ( e > 142 ) { bits |= 0x7c00; /* If exponent was 0xff and one mantissa bit was set, it means NaN, * not Inf, so make sure we set one mantissa bit too. */ bits |= ( ( e == 255 ) ? 0 : 1 ) && ( x & 0x007fffff ); return bits; } /* If exponent underflows but not too much, return a denormal */ if ( e < 113 ) { m |= 0x0800; /* Extra rounding may overflow and set mantissa to 0 and exponent * to 1, which is OK. */ bits |= ( m >> ( 114 - e ) ) + ( ( m >> ( 113 - e ) ) & 1 ); return bits; } bits |= ( ( e - 112 ) << 10 ) | ( m >> 1 ); /* Extra rounding. An overflow will set mantissa to 0 and increment * the exponent, which is OK. */ bits += m & 1; return bits; } } const LineStrip = 0; const LinePieces = 1; const NoColors = 0; const FaceColors = 1; const VertexColors = 2; function MeshFaceMaterial( materials ) { console.warn( 'THREE.MeshFaceMaterial has been removed. Use an Array instead.' ); return materials; } function MultiMaterial( materials = [] ) { console.warn( 'THREE.MultiMaterial has been removed. Use an Array instead.' ); materials.isMultiMaterial = true; materials.materials = materials; materials.clone = function () { return materials.slice(); }; return materials; } function PointCloud( geometry, material ) { console.warn( 'THREE.PointCloud has been renamed to THREE.Points.' ); return new Points( geometry, material ); } function Particle( material ) { console.warn( 'THREE.Particle has been renamed to THREE.Sprite.' ); return new Sprite( material ); } function ParticleSystem( geometry, material ) { console.warn( 'THREE.ParticleSystem has been renamed to THREE.Points.' ); return new Points( geometry, material ); } function PointCloudMaterial( parameters ) { console.warn( 'THREE.PointCloudMaterial has been renamed to THREE.PointsMaterial.' ); return new PointsMaterial( parameters ); } function ParticleBasicMaterial( parameters ) { console.warn( 'THREE.ParticleBasicMaterial has been renamed to THREE.PointsMaterial.' ); return new PointsMaterial( parameters ); } function ParticleSystemMaterial( parameters ) { console.warn( 'THREE.ParticleSystemMaterial has been renamed to THREE.PointsMaterial.' ); return new PointsMaterial( parameters ); } function Vertex( x, y, z ) { console.warn( 'THREE.Vertex has been removed. Use THREE.Vector3 instead.' ); return new Vector3( x, y, z ); } // function DynamicBufferAttribute( array, itemSize ) { console.warn( 'THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setUsage( THREE.DynamicDrawUsage ) instead.' ); return new BufferAttribute( array, itemSize ).setUsage( DynamicDrawUsage ); } function Int8Attribute( array, itemSize ) { console.warn( 'THREE.Int8Attribute has been removed. Use new THREE.Int8BufferAttribute() instead.' ); return new Int8BufferAttribute( array, itemSize ); } function Uint8Attribute( array, itemSize ) { console.warn( 'THREE.Uint8Attribute has been removed. Use new THREE.Uint8BufferAttribute() instead.' ); return new Uint8BufferAttribute( array, itemSize ); } function Uint8ClampedAttribute( array, itemSize ) { console.warn( 'THREE.Uint8ClampedAttribute has been removed. Use new THREE.Uint8ClampedBufferAttribute() instead.' ); return new Uint8ClampedBufferAttribute( array, itemSize ); } function Int16Attribute( array, itemSize ) { console.warn( 'THREE.Int16Attribute has been removed. Use new THREE.Int16BufferAttribute() instead.' ); return new Int16BufferAttribute( array, itemSize ); } function Uint16Attribute( array, itemSize ) { console.warn( 'THREE.Uint16Attribute has been removed. Use new THREE.Uint16BufferAttribute() instead.' ); return new Uint16BufferAttribute( array, itemSize ); } function Int32Attribute( array, itemSize ) { console.warn( 'THREE.Int32Attribute has been removed. Use new THREE.Int32BufferAttribute() instead.' ); return new Int32BufferAttribute( array, itemSize ); } function Uint32Attribute( array, itemSize ) { console.warn( 'THREE.Uint32Attribute has been removed. Use new THREE.Uint32BufferAttribute() instead.' ); return new Uint32BufferAttribute( array, itemSize ); } function Float32Attribute( array, itemSize ) { console.warn( 'THREE.Float32Attribute has been removed. Use new THREE.Float32BufferAttribute() instead.' ); return new Float32BufferAttribute( array, itemSize ); } function Float64Attribute( array, itemSize ) { console.warn( 'THREE.Float64Attribute has been removed. Use new THREE.Float64BufferAttribute() instead.' ); return new Float64BufferAttribute( array, itemSize ); } // Curve.create = function ( construct, getPoint ) { console.log( 'THREE.Curve.create() has been deprecated' ); construct.prototype = Object.create( Curve.prototype ); construct.prototype.constructor = construct; construct.prototype.getPoint = getPoint; return construct; }; // Path.prototype.fromPoints = function ( points ) { console.warn( 'THREE.Path: .fromPoints() has been renamed to .setFromPoints().' ); return this.setFromPoints( points ); }; // function AxisHelper( size ) { console.warn( 'THREE.AxisHelper has been renamed to THREE.AxesHelper.' ); return new AxesHelper( size ); } function BoundingBoxHelper( object, color ) { console.warn( 'THREE.BoundingBoxHelper has been deprecated. Creating a THREE.BoxHelper instead.' ); return new BoxHelper( object, color ); } function EdgesHelper( object, hex ) { console.warn( 'THREE.EdgesHelper has been removed. Use THREE.EdgesGeometry instead.' ); return new LineSegments( new EdgesGeometry( object.geometry ), new LineBasicMaterial( { color: hex !== undefined ? hex : 0xffffff } ) ); } GridHelper.prototype.setColors = function () { console.error( 'THREE.GridHelper: setColors() has been deprecated, pass them in the constructor instead.' ); }; SkeletonHelper.prototype.update = function () { console.error( 'THREE.SkeletonHelper: update() no longer needs to be called.' ); }; function WireframeHelper( object, hex ) { console.warn( 'THREE.WireframeHelper has been removed. Use THREE.WireframeGeometry instead.' ); return new LineSegments( new WireframeGeometry( object.geometry ), new LineBasicMaterial( { color: hex !== undefined ? hex : 0xffffff } ) ); } // Loader.prototype.extractUrlBase = function ( url ) { console.warn( 'THREE.Loader: .extractUrlBase() has been deprecated. Use THREE.LoaderUtils.extractUrlBase() instead.' ); return LoaderUtils.extractUrlBase( url ); }; Loader.Handlers = { add: function ( /* regex, loader */ ) { console.error( 'THREE.Loader: Handlers.add() has been removed. Use LoadingManager.addHandler() instead.' ); }, get: function ( /* file */ ) { console.error( 'THREE.Loader: Handlers.get() has been removed. Use LoadingManager.getHandler() instead.' ); } }; function XHRLoader( manager ) { console.warn( 'THREE.XHRLoader has been renamed to THREE.FileLoader.' ); return new FileLoader( manager ); } function BinaryTextureLoader( manager ) { console.warn( 'THREE.BinaryTextureLoader has been renamed to THREE.DataTextureLoader.' ); return new DataTextureLoader( manager ); } // Box2.prototype.center = function ( optionalTarget ) { console.warn( 'THREE.Box2: .center() has been renamed to .getCenter().' ); return this.getCenter( optionalTarget ); }; Box2.prototype.empty = function () { console.warn( 'THREE.Box2: .empty() has been renamed to .isEmpty().' ); return this.isEmpty(); }; Box2.prototype.isIntersectionBox = function ( box ) { console.warn( 'THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().' ); return this.intersectsBox( box ); }; Box2.prototype.size = function ( optionalTarget ) { console.warn( 'THREE.Box2: .size() has been renamed to .getSize().' ); return this.getSize( optionalTarget ); }; // Box3.prototype.center = function ( optionalTarget ) { console.warn( 'THREE.Box3: .center() has been renamed to .getCenter().' ); return this.getCenter( optionalTarget ); }; Box3.prototype.empty = function () { console.warn( 'THREE.Box3: .empty() has been renamed to .isEmpty().' ); return this.isEmpty(); }; Box3.prototype.isIntersectionBox = function ( box ) { console.warn( 'THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().' ); return this.intersectsBox( box ); }; Box3.prototype.isIntersectionSphere = function ( sphere ) { console.warn( 'THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().' ); return this.intersectsSphere( sphere ); }; Box3.prototype.size = function ( optionalTarget ) { console.warn( 'THREE.Box3: .size() has been renamed to .getSize().' ); return this.getSize( optionalTarget ); }; // Sphere.prototype.empty = function () { console.warn( 'THREE.Sphere: .empty() has been renamed to .isEmpty().' ); return this.isEmpty(); }; // Frustum.prototype.setFromMatrix = function ( m ) { console.warn( 'THREE.Frustum: .setFromMatrix() has been renamed to .setFromProjectionMatrix().' ); return this.setFromProjectionMatrix( m ); }; // Line3.prototype.center = function ( optionalTarget ) { console.warn( 'THREE.Line3: .center() has been renamed to .getCenter().' ); return this.getCenter( optionalTarget ); }; // Matrix3.prototype.flattenToArrayOffset = function ( array, offset ) { console.warn( 'THREE.Matrix3: .flattenToArrayOffset() has been deprecated. Use .toArray() instead.' ); return this.toArray( array, offset ); }; Matrix3.prototype.multiplyVector3 = function ( vector ) { console.warn( 'THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.' ); return vector.applyMatrix3( this ); }; Matrix3.prototype.multiplyVector3Array = function ( /* a */ ) { console.error( 'THREE.Matrix3: .multiplyVector3Array() has been removed.' ); }; Matrix3.prototype.applyToBufferAttribute = function ( attribute ) { console.warn( 'THREE.Matrix3: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix3( matrix ) instead.' ); return attribute.applyMatrix3( this ); }; Matrix3.prototype.applyToVector3Array = function ( /* array, offset, length */ ) { console.error( 'THREE.Matrix3: .applyToVector3Array() has been removed.' ); }; Matrix3.prototype.getInverse = function ( matrix ) { console.warn( 'THREE.Matrix3: .getInverse() has been removed. Use matrixInv.copy( matrix ).invert(); instead.' ); return this.copy( matrix ).invert(); }; // Matrix4.prototype.extractPosition = function ( m ) { console.warn( 'THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().' ); return this.copyPosition( m ); }; Matrix4.prototype.flattenToArrayOffset = function ( array, offset ) { console.warn( 'THREE.Matrix4: .flattenToArrayOffset() has been deprecated. Use .toArray() instead.' ); return this.toArray( array, offset ); }; Matrix4.prototype.getPosition = function () { console.warn( 'THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.' ); return new Vector3().setFromMatrixColumn( this, 3 ); }; Matrix4.prototype.setRotationFromQuaternion = function ( q ) { console.warn( 'THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().' ); return this.makeRotationFromQuaternion( q ); }; Matrix4.prototype.multiplyToArray = function () { console.warn( 'THREE.Matrix4: .multiplyToArray() has been removed.' ); }; Matrix4.prototype.multiplyVector3 = function ( vector ) { console.warn( 'THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) instead.' ); return vector.applyMatrix4( this ); }; Matrix4.prototype.multiplyVector4 = function ( vector ) { console.warn( 'THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.' ); return vector.applyMatrix4( this ); }; Matrix4.prototype.multiplyVector3Array = function ( /* a */ ) { console.error( 'THREE.Matrix4: .multiplyVector3Array() has been removed.' ); }; Matrix4.prototype.rotateAxis = function ( v ) { console.warn( 'THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.' ); v.transformDirection( this ); }; Matrix4.prototype.crossVector = function ( vector ) { console.warn( 'THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.' ); return vector.applyMatrix4( this ); }; Matrix4.prototype.translate = function () { console.error( 'THREE.Matrix4: .translate() has been removed.' ); }; Matrix4.prototype.rotateX = function () { console.error( 'THREE.Matrix4: .rotateX() has been removed.' ); }; Matrix4.prototype.rotateY = function () { console.error( 'THREE.Matrix4: .rotateY() has been removed.' ); }; Matrix4.prototype.rotateZ = function () { console.error( 'THREE.Matrix4: .rotateZ() has been removed.' ); }; Matrix4.prototype.rotateByAxis = function () { console.error( 'THREE.Matrix4: .rotateByAxis() has been removed.' ); }; Matrix4.prototype.applyToBufferAttribute = function ( attribute ) { console.warn( 'THREE.Matrix4: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix4( matrix ) instead.' ); return attribute.applyMatrix4( this ); }; Matrix4.prototype.applyToVector3Array = function ( /* array, offset, length */ ) { console.error( 'THREE.Matrix4: .applyToVector3Array() has been removed.' ); }; Matrix4.prototype.makeFrustum = function ( left, right, bottom, top, near, far ) { console.warn( 'THREE.Matrix4: .makeFrustum() has been removed. Use .makePerspective( left, right, top, bottom, near, far ) instead.' ); return this.makePerspective( left, right, top, bottom, near, far ); }; Matrix4.prototype.getInverse = function ( matrix ) { console.warn( 'THREE.Matrix4: .getInverse() has been removed. Use matrixInv.copy( matrix ).invert(); instead.' ); return this.copy( matrix ).invert(); }; // Plane.prototype.isIntersectionLine = function ( line ) { console.warn( 'THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().' ); return this.intersectsLine( line ); }; // Quaternion.prototype.multiplyVector3 = function ( vector ) { console.warn( 'THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.' ); return vector.applyQuaternion( this ); }; Quaternion.prototype.inverse = function ( ) { console.warn( 'THREE.Quaternion: .inverse() has been renamed to invert().' ); return this.invert(); }; // Ray.prototype.isIntersectionBox = function ( box ) { console.warn( 'THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().' ); return this.intersectsBox( box ); }; Ray.prototype.isIntersectionPlane = function ( plane ) { console.warn( 'THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().' ); return this.intersectsPlane( plane ); }; Ray.prototype.isIntersectionSphere = function ( sphere ) { console.warn( 'THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().' ); return this.intersectsSphere( sphere ); }; // Triangle.prototype.area = function () { console.warn( 'THREE.Triangle: .area() has been renamed to .getArea().' ); return this.getArea(); }; Triangle.prototype.barycoordFromPoint = function ( point, target ) { console.warn( 'THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().' ); return this.getBarycoord( point, target ); }; Triangle.prototype.midpoint = function ( target ) { console.warn( 'THREE.Triangle: .midpoint() has been renamed to .getMidpoint().' ); return this.getMidpoint( target ); }; Triangle.prototypenormal = function ( target ) { console.warn( 'THREE.Triangle: .normal() has been renamed to .getNormal().' ); return this.getNormal( target ); }; Triangle.prototype.plane = function ( target ) { console.warn( 'THREE.Triangle: .plane() has been renamed to .getPlane().' ); return this.getPlane( target ); }; Triangle.barycoordFromPoint = function ( point, a, b, c, target ) { console.warn( 'THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().' ); return Triangle.getBarycoord( point, a, b, c, target ); }; Triangle.normal = function ( a, b, c, target ) { console.warn( 'THREE.Triangle: .normal() has been renamed to .getNormal().' ); return Triangle.getNormal( a, b, c, target ); }; // Shape.prototype.extractAllPoints = function ( divisions ) { console.warn( 'THREE.Shape: .extractAllPoints() has been removed. Use .extractPoints() instead.' ); return this.extractPoints( divisions ); }; Shape.prototype.extrude = function ( options ) { console.warn( 'THREE.Shape: .extrude() has been removed. Use ExtrudeGeometry() instead.' ); return new ExtrudeGeometry( this, options ); }; Shape.prototype.makeGeometry = function ( options ) { console.warn( 'THREE.Shape: .makeGeometry() has been removed. Use ShapeGeometry() instead.' ); return new ShapeGeometry( this, options ); }; // Vector2.prototype.fromAttribute = function ( attribute, index, offset ) { console.warn( 'THREE.Vector2: .fromAttribute() has been renamed to .fromBufferAttribute().' ); return this.fromBufferAttribute( attribute, index, offset ); }; Vector2.prototype.distanceToManhattan = function ( v ) { console.warn( 'THREE.Vector2: .distanceToManhattan() has been renamed to .manhattanDistanceTo().' ); return this.manhattanDistanceTo( v ); }; Vector2.prototype.lengthManhattan = function () { console.warn( 'THREE.Vector2: .lengthManhattan() has been renamed to .manhattanLength().' ); return this.manhattanLength(); }; // Vector3.prototype.setEulerFromRotationMatrix = function () { console.error( 'THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.' ); }; Vector3.prototype.setEulerFromQuaternion = function () { console.error( 'THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.' ); }; Vector3.prototype.getPositionFromMatrix = function ( m ) { console.warn( 'THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().' ); return this.setFromMatrixPosition( m ); }; Vector3.prototype.getScaleFromMatrix = function ( m ) { console.warn( 'THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().' ); return this.setFromMatrixScale( m ); }; Vector3.prototype.getColumnFromMatrix = function ( index, matrix ) { console.warn( 'THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().' ); return this.setFromMatrixColumn( matrix, index ); }; Vector3.prototype.applyProjection = function ( m ) { console.warn( 'THREE.Vector3: .applyProjection() has been removed. Use .applyMatrix4( m ) instead.' ); return this.applyMatrix4( m ); }; Vector3.prototype.fromAttribute = function ( attribute, index, offset ) { console.warn( 'THREE.Vector3: .fromAttribute() has been renamed to .fromBufferAttribute().' ); return this.fromBufferAttribute( attribute, index, offset ); }; Vector3.prototype.distanceToManhattan = function ( v ) { console.warn( 'THREE.Vector3: .distanceToManhattan() has been renamed to .manhattanDistanceTo().' ); return this.manhattanDistanceTo( v ); }; Vector3.prototype.lengthManhattan = function () { console.warn( 'THREE.Vector3: .lengthManhattan() has been renamed to .manhattanLength().' ); return this.manhattanLength(); }; // Vector4.prototype.fromAttribute = function ( attribute, index, offset ) { console.warn( 'THREE.Vector4: .fromAttribute() has been renamed to .fromBufferAttribute().' ); return this.fromBufferAttribute( attribute, index, offset ); }; Vector4.prototype.lengthManhattan = function () { console.warn( 'THREE.Vector4: .lengthManhattan() has been renamed to .manhattanLength().' ); return this.manhattanLength(); }; // Object3D.prototype.getChildByName = function ( name ) { console.warn( 'THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().' ); return this.getObjectByName( name ); }; Object3D.prototype.renderDepth = function () { console.warn( 'THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.' ); }; Object3D.prototype.translate = function ( distance, axis ) { console.warn( 'THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.' ); return this.translateOnAxis( axis, distance ); }; Object3D.prototype.getWorldRotation = function () { console.error( 'THREE.Object3D: .getWorldRotation() has been removed. Use THREE.Object3D.getWorldQuaternion( target ) instead.' ); }; Object3D.prototype.applyMatrix = function ( matrix ) { console.warn( 'THREE.Object3D: .applyMatrix() has been renamed to .applyMatrix4().' ); return this.applyMatrix4( matrix ); }; Object.defineProperties( Object3D.prototype, { eulerOrder: { get: function () { console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' ); return this.rotation.order; }, set: function ( value ) { console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' ); this.rotation.order = value; } }, useQuaternion: { get: function () { console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' ); }, set: function () { console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' ); } } } ); Mesh.prototype.setDrawMode = function () { console.error( 'THREE.Mesh: .setDrawMode() has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.' ); }; Object.defineProperties( Mesh.prototype, { drawMode: { get: function () { console.error( 'THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode.' ); return TrianglesDrawMode; }, set: function () { console.error( 'THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.' ); } } } ); SkinnedMesh.prototype.initBones = function () { console.error( 'THREE.SkinnedMesh: initBones() has been removed.' ); }; // PerspectiveCamera.prototype.setLens = function ( focalLength, filmGauge ) { console.warn( 'THREE.PerspectiveCamera.setLens is deprecated. ' + 'Use .setFocalLength and .filmGauge for a photographic setup.' ); if ( filmGauge !== undefined ) this.filmGauge = filmGauge; this.setFocalLength( focalLength ); }; // Object.defineProperties( Light.prototype, { onlyShadow: { set: function () { console.warn( 'THREE.Light: .onlyShadow has been removed.' ); } }, shadowCameraFov: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraFov is now .shadow.camera.fov.' ); this.shadow.camera.fov = value; } }, shadowCameraLeft: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraLeft is now .shadow.camera.left.' ); this.shadow.camera.left = value; } }, shadowCameraRight: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraRight is now .shadow.camera.right.' ); this.shadow.camera.right = value; } }, shadowCameraTop: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraTop is now .shadow.camera.top.' ); this.shadow.camera.top = value; } }, shadowCameraBottom: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.' ); this.shadow.camera.bottom = value; } }, shadowCameraNear: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraNear is now .shadow.camera.near.' ); this.shadow.camera.near = value; } }, shadowCameraFar: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraFar is now .shadow.camera.far.' ); this.shadow.camera.far = value; } }, shadowCameraVisible: { set: function () { console.warn( 'THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.' ); } }, shadowBias: { set: function ( value ) { console.warn( 'THREE.Light: .shadowBias is now .shadow.bias.' ); this.shadow.bias = value; } }, shadowDarkness: { set: function () { console.warn( 'THREE.Light: .shadowDarkness has been removed.' ); } }, shadowMapWidth: { set: function ( value ) { console.warn( 'THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.' ); this.shadow.mapSize.width = value; } }, shadowMapHeight: { set: function ( value ) { console.warn( 'THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.' ); this.shadow.mapSize.height = value; } } } ); // Object.defineProperties( BufferAttribute.prototype, { length: { get: function () { console.warn( 'THREE.BufferAttribute: .length has been deprecated. Use .count instead.' ); return this.array.length; } }, dynamic: { get: function () { console.warn( 'THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.' ); return this.usage === DynamicDrawUsage; }, set: function ( /* value */ ) { console.warn( 'THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.' ); this.setUsage( DynamicDrawUsage ); } } } ); BufferAttribute.prototype.setDynamic = function ( value ) { console.warn( 'THREE.BufferAttribute: .setDynamic() has been deprecated. Use .setUsage() instead.' ); this.setUsage( value === true ? DynamicDrawUsage : StaticDrawUsage ); return this; }; BufferAttribute.prototype.copyIndicesArray = function ( /* indices */ ) { console.error( 'THREE.BufferAttribute: .copyIndicesArray() has been removed.' ); }, BufferAttribute.prototype.setArray = function ( /* array */ ) { console.error( 'THREE.BufferAttribute: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers' ); }; // BufferGeometry.prototype.addIndex = function ( index ) { console.warn( 'THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().' ); this.setIndex( index ); }; BufferGeometry.prototype.addAttribute = function ( name, attribute ) { console.warn( 'THREE.BufferGeometry: .addAttribute() has been renamed to .setAttribute().' ); if ( ! ( attribute && attribute.isBufferAttribute ) && ! ( attribute && attribute.isInterleavedBufferAttribute ) ) { console.warn( 'THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).' ); return this.setAttribute( name, new BufferAttribute( arguments[ 1 ], arguments[ 2 ] ) ); } if ( name === 'index' ) { console.warn( 'THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.' ); this.setIndex( attribute ); return this; } return this.setAttribute( name, attribute ); }; BufferGeometry.prototype.addDrawCall = function ( start, count, indexOffset ) { if ( indexOffset !== undefined ) { console.warn( 'THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.' ); } console.warn( 'THREE.BufferGeometry: .addDrawCall() is now .addGroup().' ); this.addGroup( start, count ); }; BufferGeometry.prototype.clearDrawCalls = function () { console.warn( 'THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().' ); this.clearGroups(); }; BufferGeometry.prototype.computeOffsets = function () { console.warn( 'THREE.BufferGeometry: .computeOffsets() has been removed.' ); }; BufferGeometry.prototype.removeAttribute = function ( name ) { console.warn( 'THREE.BufferGeometry: .removeAttribute() has been renamed to .deleteAttribute().' ); return this.deleteAttribute( name ); }; BufferGeometry.prototype.applyMatrix = function ( matrix ) { console.warn( 'THREE.BufferGeometry: .applyMatrix() has been renamed to .applyMatrix4().' ); return this.applyMatrix4( matrix ); }; Object.defineProperties( BufferGeometry.prototype, { drawcalls: { get: function () { console.error( 'THREE.BufferGeometry: .drawcalls has been renamed to .groups.' ); return this.groups; } }, offsets: { get: function () { console.warn( 'THREE.BufferGeometry: .offsets has been renamed to .groups.' ); return this.groups; } } } ); InterleavedBuffer.prototype.setDynamic = function ( value ) { console.warn( 'THREE.InterleavedBuffer: .setDynamic() has been deprecated. Use .setUsage() instead.' ); this.setUsage( value === true ? DynamicDrawUsage : StaticDrawUsage ); return this; }; InterleavedBuffer.prototype.setArray = function ( /* array */ ) { console.error( 'THREE.InterleavedBuffer: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers' ); }; // ExtrudeGeometry.prototype.getArrays = function () { console.error( 'THREE.ExtrudeGeometry: .getArrays() has been removed.' ); }; ExtrudeGeometry.prototype.addShapeList = function () { console.error( 'THREE.ExtrudeGeometry: .addShapeList() has been removed.' ); }; ExtrudeGeometry.prototype.addShape = function () { console.error( 'THREE.ExtrudeGeometry: .addShape() has been removed.' ); }; // Scene.prototype.dispose = function () { console.error( 'THREE.Scene: .dispose() has been removed.' ); }; // Uniform.prototype.onUpdate = function () { console.warn( 'THREE.Uniform: .onUpdate() has been removed. Use object.onBeforeRender() instead.' ); return this; }; // Object.defineProperties( Material.prototype, { wrapAround: { get: function () { console.warn( 'THREE.Material: .wrapAround has been removed.' ); }, set: function () { console.warn( 'THREE.Material: .wrapAround has been removed.' ); } }, overdraw: { get: function () { console.warn( 'THREE.Material: .overdraw has been removed.' ); }, set: function () { console.warn( 'THREE.Material: .overdraw has been removed.' ); } }, wrapRGB: { get: function () { console.warn( 'THREE.Material: .wrapRGB has been removed.' ); return new Color(); } }, shading: { get: function () { console.error( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' ); }, set: function ( value ) { console.warn( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' ); this.flatShading = ( value === FlatShading ); } }, stencilMask: { get: function () { console.warn( 'THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.' ); return this.stencilFuncMask; }, set: function ( value ) { console.warn( 'THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.' ); this.stencilFuncMask = value; } }, vertexTangents: { get: function () { console.warn( 'THREE.' + this.type + ': .vertexTangents has been removed.' ); }, set: function () { console.warn( 'THREE.' + this.type + ': .vertexTangents has been removed.' ); } }, } ); Object.defineProperties( ShaderMaterial.prototype, { derivatives: { get: function () { console.warn( 'THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' ); return this.extensions.derivatives; }, set: function ( value ) { console.warn( 'THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' ); this.extensions.derivatives = value; } } } ); // WebGLRenderer.prototype.clearTarget = function ( renderTarget, color, depth, stencil ) { console.warn( 'THREE.WebGLRenderer: .clearTarget() has been deprecated. Use .setRenderTarget() and .clear() instead.' ); this.setRenderTarget( renderTarget ); this.clear( color, depth, stencil ); }; WebGLRenderer.prototype.animate = function ( callback ) { console.warn( 'THREE.WebGLRenderer: .animate() is now .setAnimationLoop().' ); this.setAnimationLoop( callback ); }; WebGLRenderer.prototype.getCurrentRenderTarget = function () { console.warn( 'THREE.WebGLRenderer: .getCurrentRenderTarget() is now .getRenderTarget().' ); return this.getRenderTarget(); }; WebGLRenderer.prototype.getMaxAnisotropy = function () { console.warn( 'THREE.WebGLRenderer: .getMaxAnisotropy() is now .capabilities.getMaxAnisotropy().' ); return this.capabilities.getMaxAnisotropy(); }; WebGLRenderer.prototype.getPrecision = function () { console.warn( 'THREE.WebGLRenderer: .getPrecision() is now .capabilities.precision.' ); return this.capabilities.precision; }; WebGLRenderer.prototype.resetGLState = function () { console.warn( 'THREE.WebGLRenderer: .resetGLState() is now .state.reset().' ); return this.state.reset(); }; WebGLRenderer.prototype.supportsFloatTextures = function () { console.warn( 'THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).' ); return this.extensions.get( 'OES_texture_float' ); }; WebGLRenderer.prototype.supportsHalfFloatTextures = function () { console.warn( 'THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).' ); return this.extensions.get( 'OES_texture_half_float' ); }; WebGLRenderer.prototype.supportsStandardDerivatives = function () { console.warn( 'THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).' ); return this.extensions.get( 'OES_standard_derivatives' ); }; WebGLRenderer.prototype.supportsCompressedTextureS3TC = function () { console.warn( 'THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).' ); return this.extensions.get( 'WEBGL_compressed_texture_s3tc' ); }; WebGLRenderer.prototype.supportsCompressedTexturePVRTC = function () { console.warn( 'THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).' ); return this.extensions.get( 'WEBGL_compressed_texture_pvrtc' ); }; WebGLRenderer.prototype.supportsBlendMinMax = function () { console.warn( 'THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).' ); return this.extensions.get( 'EXT_blend_minmax' ); }; WebGLRenderer.prototype.supportsVertexTextures = function () { console.warn( 'THREE.WebGLRenderer: .supportsVertexTextures() is now .capabilities.vertexTextures.' ); return this.capabilities.vertexTextures; }; WebGLRenderer.prototype.supportsInstancedArrays = function () { console.warn( 'THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).' ); return this.extensions.get( 'ANGLE_instanced_arrays' ); }; WebGLRenderer.prototype.enableScissorTest = function ( boolean ) { console.warn( 'THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().' ); this.setScissorTest( boolean ); }; WebGLRenderer.prototype.initMaterial = function () { console.warn( 'THREE.WebGLRenderer: .initMaterial() has been removed.' ); }; WebGLRenderer.prototype.addPrePlugin = function () { console.warn( 'THREE.WebGLRenderer: .addPrePlugin() has been removed.' ); }; WebGLRenderer.prototype.addPostPlugin = function () { console.warn( 'THREE.WebGLRenderer: .addPostPlugin() has been removed.' ); }; WebGLRenderer.prototype.updateShadowMap = function () { console.warn( 'THREE.WebGLRenderer: .updateShadowMap() has been removed.' ); }; WebGLRenderer.prototype.setFaceCulling = function () { console.warn( 'THREE.WebGLRenderer: .setFaceCulling() has been removed.' ); }; WebGLRenderer.prototype.allocTextureUnit = function () { console.warn( 'THREE.WebGLRenderer: .allocTextureUnit() has been removed.' ); }; WebGLRenderer.prototype.setTexture = function () { console.warn( 'THREE.WebGLRenderer: .setTexture() has been removed.' ); }; WebGLRenderer.prototype.setTexture2D = function () { console.warn( 'THREE.WebGLRenderer: .setTexture2D() has been removed.' ); }; WebGLRenderer.prototype.setTextureCube = function () { console.warn( 'THREE.WebGLRenderer: .setTextureCube() has been removed.' ); }; WebGLRenderer.prototype.getActiveMipMapLevel = function () { console.warn( 'THREE.WebGLRenderer: .getActiveMipMapLevel() is now .getActiveMipmapLevel().' ); return this.getActiveMipmapLevel(); }; Object.defineProperties( WebGLRenderer.prototype, { shadowMapEnabled: { get: function () { return this.shadowMap.enabled; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.' ); this.shadowMap.enabled = value; } }, shadowMapType: { get: function () { return this.shadowMap.type; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.' ); this.shadowMap.type = value; } }, shadowMapCullFace: { get: function () { console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.' ); return undefined; }, set: function ( /* value */ ) { console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.' ); } }, context: { get: function () { console.warn( 'THREE.WebGLRenderer: .context has been removed. Use .getContext() instead.' ); return this.getContext(); } }, vr: { get: function () { console.warn( 'THREE.WebGLRenderer: .vr has been renamed to .xr' ); return this.xr; } }, gammaInput: { get: function () { console.warn( 'THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.' ); return false; }, set: function () { console.warn( 'THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.' ); } }, gammaOutput: { get: function () { console.warn( 'THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.' ); return false; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.' ); this.outputEncoding = ( value === true ) ? sRGBEncoding : LinearEncoding; } }, toneMappingWhitePoint: { get: function () { console.warn( 'THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.' ); return 1.0; }, set: function () { console.warn( 'THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.' ); } }, } ); Object.defineProperties( WebGLShadowMap.prototype, { cullFace: { get: function () { console.warn( 'THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.' ); return undefined; }, set: function ( /* cullFace */ ) { console.warn( 'THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.' ); } }, renderReverseSided: { get: function () { console.warn( 'THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.' ); return undefined; }, set: function () { console.warn( 'THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.' ); } }, renderSingleSided: { get: function () { console.warn( 'THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.' ); return undefined; }, set: function () { console.warn( 'THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.' ); } } } ); function WebGLRenderTargetCube( width, height, options ) { console.warn( 'THREE.WebGLRenderTargetCube( width, height, options ) is now WebGLCubeRenderTarget( size, options ).' ); return new WebGLCubeRenderTarget( width, options ); } // Object.defineProperties( WebGLRenderTarget.prototype, { wrapS: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' ); return this.texture.wrapS; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' ); this.texture.wrapS = value; } }, wrapT: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' ); return this.texture.wrapT; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' ); this.texture.wrapT = value; } }, magFilter: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' ); return this.texture.magFilter; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' ); this.texture.magFilter = value; } }, minFilter: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' ); return this.texture.minFilter; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' ); this.texture.minFilter = value; } }, anisotropy: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' ); return this.texture.anisotropy; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' ); this.texture.anisotropy = value; } }, offset: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' ); return this.texture.offset; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' ); this.texture.offset = value; } }, repeat: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' ); return this.texture.repeat; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' ); this.texture.repeat = value; } }, format: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' ); return this.texture.format; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' ); this.texture.format = value; } }, type: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' ); return this.texture.type; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' ); this.texture.type = value; } }, generateMipmaps: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' ); return this.texture.generateMipmaps; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' ); this.texture.generateMipmaps = value; } } } ); // Audio.prototype.load = function ( file ) { console.warn( 'THREE.Audio: .load has been deprecated. Use THREE.AudioLoader instead.' ); const scope = this; const audioLoader = new AudioLoader(); audioLoader.load( file, function ( buffer ) { scope.setBuffer( buffer ); } ); return this; }; AudioAnalyser.prototype.getData = function () { console.warn( 'THREE.AudioAnalyser: .getData() is now .getFrequencyData().' ); return this.getFrequencyData(); }; // CubeCamera.prototype.updateCubeMap = function ( renderer, scene ) { console.warn( 'THREE.CubeCamera: .updateCubeMap() is now .update().' ); return this.update( renderer, scene ); }; CubeCamera.prototype.clear = function ( renderer, color, depth, stencil ) { console.warn( 'THREE.CubeCamera: .clear() is now .renderTarget.clear().' ); return this.renderTarget.clear( renderer, color, depth, stencil ); }; ImageUtils.crossOrigin = undefined; ImageUtils.loadTexture = function ( url, mapping, onLoad, onError ) { console.warn( 'THREE.ImageUtils.loadTexture has been deprecated. Use THREE.TextureLoader() instead.' ); const loader = new TextureLoader(); loader.setCrossOrigin( this.crossOrigin ); const texture = loader.load( url, onLoad, undefined, onError ); if ( mapping ) texture.mapping = mapping; return texture; }; ImageUtils.loadTextureCube = function ( urls, mapping, onLoad, onError ) { console.warn( 'THREE.ImageUtils.loadTextureCube has been deprecated. Use THREE.CubeTextureLoader() instead.' ); const loader = new CubeTextureLoader(); loader.setCrossOrigin( this.crossOrigin ); const texture = loader.load( urls, onLoad, undefined, onError ); if ( mapping ) texture.mapping = mapping; return texture; }; ImageUtils.loadCompressedTexture = function () { console.error( 'THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.' ); }; ImageUtils.loadCompressedTextureCube = function () { console.error( 'THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.' ); }; // function CanvasRenderer() { console.error( 'THREE.CanvasRenderer has been removed' ); } // function JSONLoader() { console.error( 'THREE.JSONLoader has been removed.' ); } // const SceneUtils = { createMultiMaterialObject: function ( /* geometry, materials */ ) { console.error( 'THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js' ); }, detach: function ( /* child, parent, scene */ ) { console.error( 'THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js' ); }, attach: function ( /* child, scene, parent */ ) { console.error( 'THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js' ); } }; // function LensFlare() { console.error( 'THREE.LensFlare has been moved to /examples/jsm/objects/Lensflare.js' ); } if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) { /* eslint-disable no-undef */ __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'register', { detail: { revision: REVISION, } } ) ); /* eslint-enable no-undef */ } if ( typeof window !== 'undefined' ) { if ( window.__THREE__ ) { console.warn( 'WARNING: Multiple instances of Three.js being imported.' ); } else { window.__THREE__ = REVISION; } } /***/ }) /******/ }); /************************************************************************/ /******/ // The module cache /******/ var __webpack_module_cache__ = {}; /******/ /******/ // The require function /******/ function __webpack_require__(moduleId) { /******/ // Check if module is in cache /******/ var cachedModule = __webpack_module_cache__[moduleId]; /******/ if (cachedModule !== undefined) { /******/ return cachedModule.exports; /******/ } /******/ // Create a new module (and put it into the cache) /******/ var module = __webpack_module_cache__[moduleId] = { /******/ // no module.id needed /******/ // no module.loaded needed /******/ exports: {} /******/ }; /******/ /******/ // Execute the module function /******/ __webpack_modules__[moduleId](module, module.exports, __webpack_require__); /******/ /******/ // Return the exports of the module /******/ return module.exports; /******/ } /******/ /************************************************************************/ /******/ /* webpack/runtime/define property getters */ /******/ (() => { /******/ // define getter functions for harmony exports /******/ __webpack_require__.d = (exports, definition) => { /******/ for(var key in definition) { /******/ if(__webpack_require__.o(definition, key) && !__webpack_require__.o(exports, key)) { /******/ Object.defineProperty(exports, key, { enumerable: true, get: definition[key] }); /******/ } /******/ } /******/ }; /******/ })(); /******/ /******/ /* webpack/runtime/global */ /******/ (() => { /******/ __webpack_require__.g = (function() { /******/ if (typeof globalThis === 'object') return globalThis; /******/ try { /******/ return this || new Function('return this')(); /******/ } catch (e) { /******/ if (typeof window === 'object') return window; /******/ } /******/ })(); /******/ })(); /******/ /******/ /* webpack/runtime/hasOwnProperty shorthand */ /******/ (() => { /******/ __webpack_require__.o = (obj, prop) => (Object.prototype.hasOwnProperty.call(obj, prop)) /******/ })(); /******/ /******/ /* webpack/runtime/make namespace object */ /******/ (() => { /******/ // define __esModule on exports /******/ __webpack_require__.r = (exports) => { /******/ if(typeof Symbol !== 'undefined' && Symbol.toStringTag) { /******/ Object.defineProperty(exports, Symbol.toStringTag, { value: 'Module' }); /******/ } /******/ Object.defineProperty(exports, '__esModule', { value: true }); /******/ }; /******/ })(); /******/ /******/ /* webpack/runtime/publicPath */ /******/ (() => { /******/ var scriptUrl; /******/ if (__webpack_require__.g.importScripts) scriptUrl = __webpack_require__.g.location + ""; /******/ var document = __webpack_require__.g.document; /******/ if (!scriptUrl && document) { /******/ if (document.currentScript) /******/ scriptUrl = document.currentScript.src /******/ if (!scriptUrl) { /******/ var scripts = document.getElementsByTagName("script"); /******/ if(scripts.length) scriptUrl = scripts[scripts.length - 1].src /******/ } /******/ } /******/ // When supporting browsers where an automatic publicPath is not supported you must specify an output.publicPath manually via configuration /******/ // or pass an empty string ("") and set the __webpack_public_path__ variable from your code to use your own logic. /******/ if (!scriptUrl) throw new Error("Automatic publicPath is not supported in this browser"); /******/ scriptUrl = scriptUrl.replace(/#.*$/, "").replace(/\?.*$/, "").replace(/\/[^\/]+$/, "/"); /******/ __webpack_require__.p = scriptUrl; /******/ })(); /******/ /************************************************************************/ var __webpack_exports__ = {}; // This entry need to be wrapped in an IIFE because it need to be in strict mode. (() => { "use strict"; /*!**********************!*\ !*** ./src/Dubel.js ***! \**********************/ __webpack_require__.r(__webpack_exports__); /* harmony import */ var three__WEBPACK_IMPORTED_MODULE_2__ = __webpack_require__(/*! three */ "./node_modules/three/build/three.module.js"); /* harmony import */ var _Users_chop_Desktop_chamran_Three_texture_text_png__WEBPACK_IMPORTED_MODULE_0__ = __webpack_require__(/*! ../../Users/chop/Desktop/chamran/Three/texture/text.png */ "../../Users/chop/Desktop/chamran/Three/texture/text.png"); /* harmony import */ var three_dragcontrols__WEBPACK_IMPORTED_MODULE_1__ = __webpack_require__(/*! three-dragcontrols */ "./node_modules/three-dragcontrols/lib/index.module.js"); var OrbitControls = __webpack_require__(/*! three-orbitcontrols */ "./node_modules/three-orbitcontrols/OrbitControls.js"); var main = document.querySelector("#main"); var scene = new three__WEBPACK_IMPORTED_MODULE_2__.Scene(); var camera = new three__WEBPACK_IMPORTED_MODULE_2__.PerspectiveCamera(75, innerHeight / innerHeight, 0.1, 1000); // controls.enableDamping = true // controls.dampingFactor = 0.25 // controls.enableZoom = false var light = new three__WEBPACK_IMPORTED_MODULE_2__.PointLight(0xffffff, 1, 1000); light.position.set(200, 200, 200); scene.add(light); scene.background = new three__WEBPACK_IMPORTED_MODULE_2__.Color("#17191c"); camera.position.set(0, 0, 100); var renderer = new three__WEBPACK_IMPORTED_MODULE_2__.WebGLRenderer(); var texture = new three__WEBPACK_IMPORTED_MODULE_2__.TextureLoader().load(_Users_chop_Desktop_chamran_Three_texture_text_png__WEBPACK_IMPORTED_MODULE_0__["default"]); texture.wrapS = three__WEBPACK_IMPORTED_MODULE_2__.RepeatWrapping; texture.wrapT = three__WEBPACK_IMPORTED_MODULE_2__.RepeatWrapping; texture.repeat.set(10, 6); var ballMaterial1 = { clearcoat: 1.0, cleacoatRoughness: 0.1, metalness: 0.9, roughness: 0.5, color: "#8afff1", normalMap: texture, normalScale: new three__WEBPACK_IMPORTED_MODULE_2__.Vector2(0.15, 0.15) }; var ballMaterial2 = { clearcoat: 1.0, cleacoatRoughness: 0.1, metalness: 0.9, roughness: 0.5, color: "red", normalMap: texture, normalScale: new three__WEBPACK_IMPORTED_MODULE_2__.Vector2(0.15, 0.15) }; var dayere = new three__WEBPACK_IMPORTED_MODULE_2__.SphereGeometry(20, 64, 64); var dayereTex1 = new three__WEBPACK_IMPORTED_MODULE_2__.MeshPhysicalMaterial(ballMaterial1); var dayereTex2 = new three__WEBPACK_IMPORTED_MODULE_2__.MeshPhysicalMaterial(ballMaterial2); var meterial = new three__WEBPACK_IMPORTED_MODULE_2__.MeshBasicMaterial(); meterial.color.set('#e61cc7'); var mesh1 = new three__WEBPACK_IMPORTED_MODULE_2__.Mesh(dayere, dayereTex1); var mesh2 = new three__WEBPACK_IMPORTED_MODULE_2__.Mesh(dayere, dayereTex2); mesh1.position.x = 30; mesh2.position.x = -30; // var fgeometry = new THREE.PlaneGeometry( 500, 500, 1, 1 ); // var fmaterial = new THREE.MeshBasicMaterial( { color: "#1c3ae6" } ) // var floor = new THREE.Mesh( fgeometry, fmaterial ); // floor.material.side = THREE.DoubleSide; // floor.rotation.x = 90; // scene.add( floor ); renderer.setSize(innerWidth, innerHeight); main.appendChild(renderer.domElement); scene.add(mesh1); scene.add(mesh2); // const controls = new DragControls(geometry, camera, renderer.domElement) // console.log(controls); // controls.addEventListener('dragstart', function (event) { // console.log("adadwdsd"); // event.geometry.material.opacity = 0.33 // console.log(event); // }) // controls.addEventListener('dragend', function (event) { // event.geometry.material.opacity = 1 // }) var controlsCamra = new OrbitControls(camera, renderer.domElement); function animate() { controlsCamra.update(); requestAnimationFrame(animate); renderer.render(scene, camera); // mesh.rotation.y += 0.01; } animate(); })(); /******/ })() ;